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1. Introduction

One concept that an instructor of Linear Algebra would like
his or her students to grasp by the end of the course is that of
linear independence. A fact, relating to linear independence, that
a fair number of students eventually come to accept without really
understanding, is that any collection of more than n vectors in Rn

is linearly dependent.
In this paper, we consider an elementary proof of this fact,

based on two fairly obvious lemmas. The value of this proof is that
it can be presented in a less formal, more visual and intuitive way,
that is easily understood by most students.

After presenting a rigorous version of this proof of why any
collection of n+ 1 vectors in Rn is always linearly dependent, we
will consider a less formal version more suited for the typical un-
dergraduate student.

2. The Proof

To begin, we will agree to restrict allowable row operations, to
be used during forward elimination, to the following three:

(1) Any row may be multiplied by a non-zero constant.
(2) Any row may be replaced by the sum of itself and a non

zero multiple of another row.
(3) Any two rows may be “switched,” or interchanged,

position-wise.
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Lemma 1. Let A be an n × m matrix, and let v1, v2, . . . , vn
be the original rows of A. At any stage during forward elimina-
tion, every row of A is a linear combination of the original rows,
v1, v2, . . . , vn.

Proof. Let N be the number of “allowable” row operations
that have been performed. We define Row (i) to be the ith row of
the matrix after N row operations. The proof is by induction on
N.

For N = 0, the lemma holds, as row (i) =
Pm
j=1 δijvj .

For N = k, suppose that each row is a linear combination of
the original rows, v1, v2, . . . , vn. Then for i = 1, 2, . . . ,m; row (i) =Pm
j=1 cijvj. For the induction step, we will consider the three cases

separately.

(1) If the k+1 row operation is that of multiplying row (p) by
a non-zero constant c, then row (p) =

Pm
j=1 (c · cpj) vj .

(2) If the k + 1 row operation is that of replacing row (p)
with the sum of row (p) + c · row (q) , then row (p) =Pm

j=1 (cpj + c · cqj) vj .
(3) If the k+1 row operation is that of interchanging row (p)

and row (q) , then row (p) =
Pm
j=1 cqjvj and row (q) =Pm

j=1 cpjvj .

In each case, the other rows remain unchanged, and therefore,
after k+1 row operations, each row is still a linear combination of
the original rows v1, v2, . . . , vn. ¤

Lemma 2. Let A be an n × m matrix, with n > m. Then
forward elimination always yields a zero row.

Proof. (By contradiction) Assume that row interchange is
performed wherever necessary, so that the matrix is in Upper Ech-
elon form. Suppose, for the sake of contradiction, that after for-
ward elimination has been performed, there is no zero row. Let j be
least, such that the jth column contains a non-zero entry below the
main diagonal. (Such an entry exists, otherwise row m + 1 would
be a zero row after elimination, contrary to our hypothesis.) For
i > j, let i be least, such that aij 6= 0. Then ajj = 0. Otherwise, aij
would have been eliminated during forward elimination. This im-
plies that the matrix is not in reduced echelon form, contradicting
our earlier assumption. ¤

Theorem 1. Any collection of more than n vectors in Rn is
linearly dependent.

Proof. Let {v1, v2, . . . , vn, . . . , vp} be any collection of p vec-
tors in Rn, with p > n. Form a matrix, A, such that for i =
1, 2, . . . , p, the ith row of A is vi. By Lemma 2, forward elimination
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will yield a zero row – we’ll call it row (i) . By Lemma 1, row (i)
is a non-trivial linear combination of vectors v1, v2, . . . , vn, . . . , vp.
That is:

row (i) =

pX
j=1

cijvj = 0 ; with not all cij = 0.

¤

One of the nice things about this proof, is that it can be pre-
sented in a less formal, more visual way, which is easily under-
stood by most students in a first undergraduate linear algebra class.
Through experience, students realize intuitively, that any non-zero
entry below the main diagonal can be eliminated using the three
allowable row operations. What is more difficult to comprehend, is
that during any stage of forward elimination, each row is a linear
combination of the original rows. It is helpful in this regard, to
introduce the concept of linear combination before students have
occasion to perform elimination on matrices. Then, when elimina-
tion, using the three allowable row operations is introduced, repet-
itive emphasis can be placed on the fact that any row altered by
such a sequence of operations is a linear combination of the original
rows. Having this understanding, the students are well-equipped
to understand why any collection of n+1 vectors in Rn is linearly
dependent.

3. The Presentation

Given a collection {v1, v2, . . . , vn, . . . , vp} of more than n vec-
tors in Rn, form a matrix, A, whose first row is v1, second row is
v2, etc. The construction is illustrated in Figure 1.
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Note that A has more rows than columns. Performing forward
elimination, and keeping the matrix in upper echelon form, we ob-
tain zero rows below the main diagonal. The situation is illustrated
in Figure 2. (To avoid needless confusion, mention that this does
not necessarily mean that all entries on or above the main diagonal
are non-zero.)
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Figure 2

Since each zero row is the result of forward elimination, and
hence, a non-trivial linear combination of v1, v2, . . . , vn, . . . , vp, the
collection of vectors, {v1, v2, . . . , vn, . . . , vp} , is linearly dependent.
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