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1. Introduction

It is well known that the differential equations

y00 + y = 0, with y(0) = 0 and y0(0) = 1

and
y00 − y = 0, with y(0) = 0 and y0(0) = 1

lead to circular trigonometry and hyperbolic trigonometry respec-
tively. On the other hand, the initial value problem,

y00 − y0 − y = 0,with y(0) = 0 and y0(0) = 1 (1)

is the differential equation analogue to the well-known recursion
equation cn = cn−1 + cn−2, with c0 = 0 and c1 = 1. This leads us
quite naturally to the Fibonacci numbers: F0 = 0, F1 = 1; and for
all n ≥ 2, Fn = Fn−1+Fn−2.We will define the initial value prob-
lem (Eq. 1) to be the Fibonacci Differential Equation (FDE). It
has been suggested that there is a kind of trigonometry that can be
associated with certain kinds of differential equations. This paper
investigates some of the topics associated with the trigonometry
derived from the Fibonacci Differential Equation. The functions
we will develop will be defined as the Fibonometric functions.

2. The Fibonometric Sine and Cosine

It is straight forward to show that the solution to the FDE is

y = eαx−eβx
α−β , where α = 1+

√
5

2 and β = 1−√5
2 . Notice that α and β

are solutions of the quadratic equation s2−s−1 = 0. Following the
well-known patterns of sin(x) = eix−e−ix

2i and sinh(x) = ex−e−x
2 ,

we define the solution of the FDE (1):

[27]
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Definition. The Fibonacci sine is

sinf(x) =
eαx − eβx
α− β

,

where α = 1+
√
5

2 and β = 1−√5
2 .

A series solution can also be developed. We know that y =
∞P
n=0

cnx
n is a solution of the FDE. We take the first and second

derivatives of this and substitute into the FDE. After combining
like terms and equating like coefficients in the usual way, we obtain
the recursion relation

(n+ 1) (n+ 2) cn+2 − (n+ 1) cn+1 − cn = 0.
We use this equation to prove the following:

Lemma. cn =
Fnc1+Fn−1c0

n! , where Fn is the n
th Fibonacci

number.

Proof. We use strong induction.

Basis: c2 =
F2c1+F1c0

2! = (1)c1+(1)c0
2!

Assumption: cn+1 =
Fn+1c1+Fnc0

(n+1)! for all n+ 1 ≥ 3
Induction: (n+ 1)(n+ 2)cn+2 − (n+ 1)cn+1 − cn = 0,

(n+ 1)(n+ 2)cn+2 = (n+ 1)cn+1 + cn,

(n+ 1)(n+ 2)cn+2 = (n+ 1)
³
Fn+1c1+Fnc0

(n+1)!

´
+
³
Fnc1+Fn−1c0

n!

´
,

(n+ 1)(n+ 2)cn+2 =
Fn+1c1+Fnc0

n! + Fnc1+Fn−1c0
n! ,

cn+2 =
(Fn+1+Fn)c1+(Fn+Fn−1)c0

(n+2)(n+1)n! ,

cn+2 =
Fn+2c1+Fn+1c0

(n+2)!

¤

Now we can re-express the solution of the differential equation

y = c0 + c1x+

µ
c1 + c0
2!

¶
x2 + · · ·+

µ
Fnc1 + Fn−1c0

n!

¶
xn + · · · .

Imposing the initial conditions y(0) = 0 and y0(0) = 1 on the
series, we have c0 = 0 and c1 = 1. Therefore,

y = (1)x+
¡
1
2!

¢
x2 +

¡
2
3!

¢
x3 +

¡
3
4!

¢
x4 + · · ·+ ¡Fnn! ¢xn + · · ·

=
∞P
n=0

Fn
xn

n! .
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Therefore, we have proved

Theorem 1. The Fibonacci sine is

sinf(x) =
eαx − eβx
α− β

=
∞X
n=0

Fn
xn

n!
,

where Fn is the n
th Fibonacci number.

The convergence of the series can be determined by the ratio
test. In the ratio test the quotient of the n+1 and the n coefficients
of the series is examined as n→∞:

lim
n→∞

¯̄̄̄
Fn+1
(n+1)!
Fn
n!

¯̄̄̄
= lim

n→∞

h³
Fn+1
(n+1)!

´³
n!
Fn

´i
,

= lim
n→∞

h³
n!

(n+1)!

´³
Fn+1
Fn

´i
,

= lim
n→∞

h³
1

n+1

´³
Fn+1
Fn

´i
,

= 0 · lim
n→∞

³
Fn+1
Fn

´
.

In order to determine the limit, lim
n→∞

³
Fn+1
Fn

´
, the Binet Form

of the Fibonacci numbers will be used. The Binet Form of the nth

Fibonacci number, Fn is given by

Fn =
αn − βn

α− β
. (2)

Note that this formula can be readily obtained from the solution
of the difference equation cn+1 = cn + cn−1. With this characteri-
zation of the Fibonacci numbers, the ratio test for convergence of
sinf(x) can be completed. So

0 ·
³
Fn+1
Fn

´
= 0 ·

³
αn+1−βn+1

α−β
´³

α−β
αn−βn

´
,

= 0 ·
³
αn+1−βn+1
αn−βn

´
,

= 0 · lim
n→∞αn+1− lim

n→∞βn+1

lim
n→∞αn− lim

n→∞βn .

Notice, |β| < 1. Therefore, βn → 0 as n→∞. Hence,

0 ·
Ã
lim
n→∞αn+1

lim
n→∞αn

!
= 0 · lim

n→∞α = 0 · α = 0.

Therefore the series expansion for sinf(x) is absolutely convergent
for all real numbers x.

We define cosf(x) = d
dx(sinf(x)), or equivalently, from

Theorem 1:
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Definition. The Fibonacci cosine is

cosf(x) =
αeαx − βeβx

α− β
=
∞X
n=0

Fn+1
xn

n!
,

where α = 1+
√
5

2 and β = 1−√5
2 , respectively.

Lemma. cosf(x) 6= 0 for all x.

Proof. Suppose that cosf(x) = 0 for some x, then we would
have

cosf(x) =
αeαx − βeβx

α− β
= 0,

or

αeαx − βeβx = 0,

αeαx = βeβx,

β

α
= e(α−β).

But

β

α
=
1−√5
1 +
√
5
=
(1−√5)2
1− 5 =

(1−√5)2
−4 = −

Ã
1−√5
2

!2
= −β2.

Since e raised to any real power is positive and β
α < 0, we have a

contradiction and cosf(x) 6= 0. ¤

The convergence of cosf(x) is guaranteed since the derivative of
an absolutely convergent series is convergent. Since the remainder
of the Fibonacci functions are defined in terms of quotients of either
sinf(x) or cosf(x), they will also be absolutely convergent except
when a denominator is 0.

3. The Fibonometric Tangent and Cotangent

In this section we will follow the familiar patterns for the circu-
lar and hyperbolic functions and define the analogous Fibonometric

functions. We define tanf(x) = sinf(x)
cosf(x) . As we have shown, this

function is defined for all real numbers x.
Since the power series expansions for sinf and cosf have par-

ticularly nice coefficients with respect to the Fibonacci numbers,
we investigate two types of series expansions for the other Fibono-
metric functions. The first expansion is in terms of powers of ex.
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By dividing the Fibonacci sine, e
αx−eβx
α−β , by the Fibonacci cosine,

αeαx−βeβx
α−β , we have

tanf(x) =
eαx − eβx

αeαx − βeβx
,

=
eαx

eαx
·
µ
1− eβx−αx
α− βeβx−αx

¶
,

=
α

α
·
Ã

1
α − 1

αe
(β−α)x

1− β
αe

(β−α)x

!
.

Note:

1
α = 2

1+
√
5
= 2(1−√5)

(1+
√
5)(1−√5)

= −1−
√
5

2 = −β; (3)

α− β = 1+
√
5

2 − 1−√5
2 = 2

√
5

2 =
√
5; (4)

β
α = −β2. (5)

Hence,

1
α − 1

αe
(β−α)x

1− β
αe

(β−α)x =
−β + βe−

√
5x

1 + β2e−
√
5x
,

= β

Ã
−1 + e−

√
5x

1 + β2e−
√
5x

!
.

We perform the indicated division, and use the fact that β is a
solution of the equation s2−s−1 = 0 to replace β2+1 with β+2,
to obtain:

β

Ã
−1 + e−

√
5x

1 + β2e−
√
5x

!
= β

h
−1 + (β + 2)e−

√
5x − β2(β + 2)e−2

√
5x

+β4(β + 2)e−3
√
5x − · · ·

i
.
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This yields

tanf(x) = β

"
−1 +

∞X
n=0

(−1)nβ2n(β + 2)e−(n+1)
√
5x

#
.

= β

"
−1 + (β + 2)

∞X
n=0

(−1)nβ2ne−(n+1)
√
5x

#
,

= −β + β(β + 2)
∞X
n=0

(−1)nβ2ne−(n+1)
√
5x,

= −β + (β2 + 2β)
∞X
n=0

(−1)nβ2ne−(n+1)
√
5x,

= −β + (β + 1 + 2β)
∞X
n=0

(−1)nβ2ne−(n+1)
√
5x,

= −β + (3β + 1)
∞X
n=0

(−1)nβ2ne−(n+1)
√
5x.

Therefore, β2n are coefficients of powers of e−
√
5x. However, notice:

β2 = 1 + β;

β3 = β(1 + β) = β + β2 = 1 + 2β;

β4 = β(1 + 2β) = β + 2β2 = β + 2(1 + β) = 2 + 3β;

β5 = β(2 + 3β) = 2β + 3β2 = 2β + 3(1 + β) = 3 + 5β,

which suggests the following proposition.

Proposition. βn = Fn−1 + Fnβ for n ≥ 1 and similarly,
αn = Fn−1 + Fnα for n ≥ 1.

Proof. We will only give the proof for βn using induction.

Basis: β2 = F1 + F2β.
Assumption: βn = Fn−1 + Fnβ.
Induction: βn+1 = β(βn) = β(Fn−1 + Fnβ),

= Fn−1β + Fnβ2,
= Fn−1β + Fn(β + 1),
= Fn−1β + Fnβ + Fn,
= (Fn−1 + Fn)β + Fn,
= Fn+1β + Fn.

¤
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Hence we have proved

Theorem 2. The Fibonacci tangent can be expressed

tanf(x) = −β + (3β + 1)
h
e−
√
5x

+
∞P
n=1
(−1)n(Fn−1 + Fnβ)2e−

√
5(n+1)x

¸
where β = 1−√5

2 .

As a bonus, we note that the Binet form of the nth Fibonacci
number, equation 2, can be derived from the Proposition

βn = Fn−1 + Fnβ,
αn = Fn−1 + Fnα,

αn − βn = Fn(α− β),

Fn =
αn − βn

α− β
.

While the coefficients in the series for tanf(x) in powers of ex

were of some interest, the coefficients of the series in powers of x
turned out to be very complicated. We were not able to obtain a
closed form general term.

The Fibonacci cotf(x) can be defined in the obvious way

cotf(x) =
cosf(x)

sinf(x)
=

αeαx − βeβx

eαx − eβx .

We investigate the involvement of the Fibonacci numbers in the
coefficients of this quotient. Recalling equations 3, 4, and 5, we
have

cotf(x) =
³α
α

´⎡⎣ eαx −
³
β
α

´
eβx¡

1
α

¢
eαx − ¡ 1α¢ eβx

⎤⎦ ,
=

µ
eαx

eαx

¶"
1 + β2e−

√
5x

−β + βe−
√
5x

#
,

=

µ
1

β

¶"
1 + (β + 1) e−

√
5x

−1 + e−√5x

#
.

Carrying out the division in the second factor, we obtain

1 + (β + 1) e−
√
5x

−1 + e−√5x = −1− (β + 2)e−
√
5x − (β + 2)e−2

√
5x − · · · .

Consequently, we have

cotf(x) = − 1
β

Ã
1 + (β + 2)

∞X
n=1

e−n
√
5x

!
.
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Note, this is undefined if x = 0, for then sinf(x) = 0, i.e. the series
fails to converge since

(β + 2)
∞X
n=1

1 = (β + 2) lim
n→∞n =∞.

Furthermore, for any x < 0, each of the terms in the series for
cotf(x) is a positive power of e, and hence, is greater than 1.Thus,
this series diverges for x ≤ 0; or, to state it positively, the series
expression for cotf(x), derived above, converges for x > 0. As with
the Fibonacci tangent, a generalized expression for the coefficients
in the power series in x is not readily obtainable.

Definitions for the Fibonacci secant and cosecant can be ob-
tained analogously and their series investigated. The general terms
are not readily obtainable.

4. Elementary Identities of Fibonometry

In circular trigonometry, one has the identity sin2 t+cos2 t = 1.
To eliminate the parameter t, one lets x = cos(t) and y = sin(t)
and obtains the circle x2 + y2 = 1. In hyperbolic trigonometry,
the identity cosh2 t − sinh2 t = 1 leads to hyperbola x2 − y2 = 1,
where x = cosh t and y = sinh t. However, the situation is not
so direct in Fibonometry. The proof of the following theorem is
straightforward but tedious. the motivation for the theorem is not
so clear and would take us too far afield for this paper.

Theorem 3. The Fundamental Identity of Fibonometry is

cosf2(x)− cosf(x)sinf(x)− sinf2(x) = ex.
Proof. Recall that s2 − s− 1 = 0 for s = α or β. Therefore³

αeαx−βeβx
α−β

´2
−
³
αeαx−βeβx

α−β
´³

eαx−eβx
α−β

´
−
³
eαx−eβx
α−β

´2
=

³
α2e2αx−2αβe(α+β)x+β2e2βx

α2−2αβ+β2
´

−
³
αe2αx−αe(α+β)x−βe(α+β)x+βe2βx

α2−2αβ+β2
´

−
³
e2αx−2e(α+β)x+e2βx

α2−2αβ+β2
´
,

=
(α2−α−1)e2αx
α2−2αβ+β2 + (β−2αβ+α+2)e(α+β)x

α2−2αβ+β2

+
(β2−β−1)e2βx
α2−2αβ+β2 ,

=
³
0·e2αx+5ex+0·e2βx

5

´
= ex.

¤
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Note that the proof of the last theorem depends on the value
of α and β only at the last step. This leads to the following gener-
alization, which will play an important role in the second part of
this work.

Theorem 4. Suppose p and q are distinct real numbers or
conjugate complex numbers. If

y(x) =
(epx − eqx)
p− q

for all real numbers x, then

(y0)2 − (p+ q) yy0 + pqy2 = e(p+q)x
and

(y0 − py)p = (y0 − qy)q = epqx.
Proof. For the given function,

(y0)2 − (p+ q) yy0 + pqy2

=
³
pepx−qeqx

p−q
´2
− (p+ q)

³
epx−eqx
p−q

´³
pepx−qeqx

p−q
´

+pq
³
epx−eqx
p−q

´2
,

=
(p2e(p+q)x−2pqe(p+q)x+q2e(p+q)x)

(p−q)2 ,

=
(p2−2pq+q2)e(p+q)x

(p−q)2 ,

= (p−q)2e(p+q)x
(p−q)2 = e(p+q)x.

On the other hand,

(y0 − py)p =
h³

pepx−qeqx
p−q

´
− p

³
(epx−eqx)

p−q
´ip

,

=
³
pepx−qeqx−pepx+peqx

p−q
´p
,

=
³
(p−q)eqx
p−q

´p
= epqx.

The proof is similar for

(y0 − qy)q = epqx.
¤

5. Conclusions

In the previous sections we have defined the basic Fibonomet-
ric functions and shown their series expansions. In addition, we
have suggested how these may be similar to the trigonometric and
hyperbolic functions. Interestingly, we see some important differ-
ences, e.g. the role of functions of ex.
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There are a number of issues and formulas left unresolved. For
example, what are the results when sinf(x) is expressed in terms
of sinx and sinhx? What is the meaning of sinf(ix)? In Part II of
this work we will investigate formulas for the Fibonometric sine and
cosine of the sum and difference of two real numbers. The method
used will also provide insight into the Fundamental Identity.

Finally, the results of this investigation were obtained while
the author was an undergraduate student at Huntingdon College.
It was done under the direction of G. Joseph Wimbish who helped
her chart the direction of the investigation. The results of this part
of the work are those obtained in her Senior Capstone Project,
while the results of Part II are those obtained in her Mathematics
Honors Project.
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