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Evolutionarily stable strategies and their stability indices are computed for all 2-player games
of a certain type.

The games to be considered here are two-person games
of a very peculiar, elementary nature. In each instance the
game is played in one “go”. The contestants each choose
from a fixed list, the same for each contestant, of “plays”, the
two plays are played, the game is over. Who won?

Here we come to a distinctive feature of these games: they
are not about winning, as in a battle to the death, but about
payoff. We distinguish between the players: they are player
1 and player 2. There is an n × n real matrix U = [ui j], the
payoff matrix for player 1, with respect to some ordering of
the plays, of which there are n: for i, j = 1, . . . , n, ui j is the
payoff to player 1 when player 1 chooses the ith play and
player 2 chooses the jth play.

In modeling applications in which the game might be
played over and over, in varying environments, ui j may stand
for an average payoff to player 1.

What about player 2? Is there a payoff for player 2?
Whether there is or not, and whether or not player 2 is getting
a better deal than player 1, may be of emotional interest to
player 1, but it is irrelevant to the playing of the game; if
player 1 is going to play at all, player 1’s only interest is the
payoff, which player 1 would like to be large. If the game
is to be played many times, player 1 would like to maximize
the average player1 payoff.

Player 1’s problem is that player 1 has no idea which play
player 2 will choose. This is a mathematical assumption.
In situations such as the Traveler’s or Prisoner’s Dilemma
(Barker, 2009), which seemingly have to do with precisely
the kind of game under discussion here, it seems to us pretty
clear that in actual trials, player 1, knowing that the payoffs
to the two players are symmetric, and knowing that player
2 is human, has a good deal of probabilistic information on
player 2’s choice, and this violation of the “player 1 is clue-
less” assumption is an obvious explanation of the “paradoxi-
cal” divergence of experimental and “theoretical” results, es-
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pecially in the case of the Traveler’s Dilemma.
There are numerous “real” situations modeled by these

games, or by superpositions of several such games, in which
the cluelessness hypothesis is reasonable; we shall operate
under this assumption from here on. We are carrying on
about it because we think that mathematical assumptions
about models, especially probabilistic or information theo-
retic assumptions, should be explicit. After all, if you do not
look too closely, you can “use” the Poisson distribution to
“show” that the probability that the sun will rise two or more
times tomorrow is 1 − ( 2

e ), not much less than 1
3 .

Let Pn be

{(p1, p2, . . . , pn) ∈ Rn | pi ≥ 0, i = 1, 2, . . . , n and
n∑

i=1

pi = 1},

the set of probability vectors of length n. Suppose we have
a game with a list of n plays and corresponding payoff-for-
player-1 matrix U. A strategy for either player is a vector
p = (p1, p2, . . . , pn) ∈ Pn; at each instance of the game, the
player following this strategy will choose the ith play with
probability pi.

From elementary probability and statistics, it follows that
if player 1 follows strategy p, and player 2 follows strategy
q, then the average payoff for player 1 (over all instances of
the game in which the players follow these strategies) is

n∑
i=1

n∑
j=1

piui jq j = pUqT (1)

This interpretation is also valid when the ui j are them-
selves averages.

Following (Barker, 2009), we will denote pUqT by
W(p.q), and sometimes by WU(p, q). Note that W is actually
defined on Rn × Rn, and is bilinear:

W(w, au + bv) = aW(w, u) + bW(w, v)

and
W(au + bv,w) = aW(u,w) + bW(v,w)

for all u, v,w ∈ Rn and a, b ∈ R.
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Definition 1. A strategy p ∈ Pn is a Nash equilibrium for the
the game if and only if

W(q, p) ≤ W(p, p) for all q ∈ Pn

That is, if player 2 uses strategy p, player 1 is not able to
increase average payoff by using any strategy other than p.

Definition 2. Suppose ε ∈ (0, 1]; p ∈ Pn is an evolutionarily
stable strategy (ESS) with stability at least ε (for the game
under discussion) if and only if, for all q ∈ Pn\{p},

W(q, εq + (1 − ε)p)) < W(p, εq + (1 − ε)p) (2)

The motivation for this definition is reasonable, but re-
quires following a story outline. Imagine a society in which
player 1 plays randomly selected members of the population,
and everybody uses strategy p, until one fine day player 1
awakes to find that a proportion of the population (excluding
player 1) has defected to a new strategy q. Now, when player
2 is chosen at random from the population to engage player
1 in the game, the probability is ε that player 2 will use strat-
egy q, and 1 − ε that player 2 will use strategy p. Therefore,
whatever strategy r ∈ Pn player 1 uses, the average payoff
for playing the game with player 2 chosen at random from
the population excluding player 1 will be W(r, εq + (1− ε)p).
Inequality (2) expresses that, between the choices for player
1 of joining the rebels and adopting strategy q, and sticking
with the established, old-school strategy p, the average pay-
off will be greater with the latter choice.

Lemma 1. Suppose ε ∈ (0, 1] and p ∈ Pn is an ESS with
stability at least ε, for some game. Then for each ε′ ∈ (0, ε),
p is also an ESS with stability at least ε′.

Proof. Keep in mind that Pn is convex. Suppose that ε′ ∈
(0, ε). We want to show that inequality (2) holds for every
q ∈ Pn\{p}. Suppose that q ∈ Pn\{p}; note that ε′ = tε for
some t ∈ (0, 1).

Let r = tq + (1 − t)p. Then r ∈ Pn\{p}, so inequality (2)
holds, with r replacing q.

We have:

εr + (1 − ε)p = εtq + ε(1 − t)p + (1 − ε)p
= εtq + (1 − εt)p
= ε′q + (1 − ε′)p

Therefore:

W(tq + (1 − t)p, ε′q + (1 − ε′)p) = W(r, εr + (1 − ε)p)
< W(p, εr + (1 − ε)p)
= W(p, ε′q + (1 − ε′)p).

So,

tW(q, ε′q + (1 − ε′)p) + (1 − t)W(p, ε′q + (1 − ε′)p)

< W(p, ε′q + (1 − ε′)p)

and

tW(q, ε′q + (1 − ε′)p) < tW(p, ε′q + (1 − ε′)p).

Therefore, inequality (2) holds. �

Corollary 1. If, for some game, p ∈ Pn is an ESS, then p is
a Nash equilibrium for that game.

Proof. Let ε ∈ (0, 1] be such that inequality (2) holds for all
q ∈ Pn\{p}. Fix q ∈ Pn\{p}: by Lemma 1, inequality (2)
holds for all ε′ ∈ (0, ε).

Let ε′ ↓ 0, to obtain W(q, p) ≤ W(p, p). �

Definition 3. If p ∈ Pn is an ESS for some game, then

µ(p) = sup
[
ε ∈ (0, 1]; (2) holds for all q ∈ Pn\{p}

]
is the stability index of p.

Our aim here is to find all ESS’s p, and µ(p), for all pos-
sible 2-play games –that is, for all possible 2 × 2 payoff ma-
trices. The term “shooting fingers” in the title of this article
refers to one well-known incarnation of such a game: some-
body says “one, two, three, shoot!” and on the word “shoot”
each of the two contestants flings forward a hand with either
1 or 2 fingers extended (or, in some precincts, with 0 or 1 fin-
ger extended). Usually, when this game is played the payoff
is determined purely by whether the total number of fingers
extended is odd or even, which would correspond to a payoff

matrix of the form
(

a b
b a

)
, but here we allow any 2 × 2 real

matrix U.
It is possible to reduce our problem from a 4 variable prob-

lem to a 2 variable problem. Let Jn denote the n × n matrix
of all 1’s.

Lemma 2. Suppose U is the n×n player-1-payoff matrix for
a two-person game, and c is a non-zero real number. Then
for any p, q ∈ Pn,

WcU(p, q) = cWU(p, q)

and
WU+cJn (p, q) = WU(p, q) + c

We leave the proof to the reader.

Corollary 2. With U and c as in Lemma 2, a strategy p ∈ Pn
is a Nash equilibrium or an ESS with respect to the payoff
matrix U + cJn, if and only if p is a Nash equilibrium or an
ESS, respectively, with respect to U. If c > 0 an analogous
statement holds for the payoff matrices cU and U. In each
case, for ESS’s the stability index µ(p) stays the same as the
payoff matrix is replaced.

Corollary 3. The sets of Nash equilibria and of ESS’s, and
the values of µ(p) for ESS’s p ∈ Pn, with respect to any non-
constant n×n payoffmatrix U, are the same as for some n×n
payoff matrix U′ that has all entries in [0, 1], and has at least
one 0 and one 1 entry.
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Proof omitted, but here is an example to illustrate it:
Let

U =

[
1 −2
0 4

]
Take

U′ = 1
6 [U + 2J2]

=

[
1/2 0
1/3 1

]
If U = cJn, a constant matrix, then every p ∈ Pn is a Nash

equlibrium with respect to U, and there are no ESS’s.

Main Results
Given a class of non-constant payoff matrices U, the re-

sults preceding suggest the application of either or both of
the following to the task of finding all ESS’s for these matri-
ces, and their stability indices:

(a) Look for the ESS’s among the Nash equilibria for the
different payoff matrices–the requirement for a Nash equi-
librium is less complicated than the requirement for an ESS.
(b) Replace each matrix U in the class by a “normalized”

matrix U′, as suggested in Corollary 3. So, for the non-
constant 2 × 2 payoff matrices, we could break the task into
12 cases, [

0 1
a b

]
,

[
1 0
a b

]
,

[
0 a
b 1

]
, . . . ,

[
1 b
1 0

]
,

with a, b ∈ [0, 1] in each case. Some of these cases are
equivalent–you get one case from the other by re-ordering
the plays. But, also, there are pesky subcases: it makes a
differnce whether a is 0, or 1, or in between, and the same
with b.

We choose to attack the problem of finding all ESS’s, and
their stability indices, for non-constant 2 × 2 payoff matrices
directly, without resorting to either (a) or (b), above. We
recommend (a) and (b) as sources of exercises, and for use in
analyzing other classes of payoff matrices.

Let p = (x, 1 − x) and q = (s, 1 − s) such that x, s ∈ [0, 1]
and x , s.

Let

U =

[
u11 u12
u21 u22

]
From definition 2: p is an ESS if and only if there exists

some ε ∈ (0, 1] such that

W(q, εq + (1 − ε)p) < W(p, εq + (1 − ε)p)

whenever x , s.
Since W is bilinear, we can open up the parenthesis as

follows:

εW(q, q) + (1 − ε)W(q, p) < εW(p, q) + (1 − ε)W(p, p) (4)

Writing this out and grouping like terms, we eventually
arrive at:

(x − s) [ε(x − s)(u11 − u12 − u21 + u22) (5)

−x(u11 − u22 − u21 + u22) + u22 − u12] < 0

If x − s < 0, then (5) becomes

ε(x−s)(u11−u12−u21+u22)−x(u11−u12−u21+u22)+u22−u12 > 0.

As s→ x, ε(x − s)(u11 − u12 − u21 + u22)→ 0.
Therefore:

−x(u11 − u12 − u21 + u22) + u22 − u12 ≥ 0

⇔ u22 − u12 ≥ x(u11 − u12 − u21 + u22)

If u11 − u12 − u21 + u22 > 0 then

u22 − u12

u11 − u12 − u21 + u22
≥ x

and if u11 − u12 − u21 + u22 < 0 then

u22 − u12

u11 − u12 − u21 + u22
≤ x.

Or, if x − s > 0, then (5) becomes

ε(x−s)(u11−u12−u21+u22)−x(u11−u12−u21+u22)+u22−u12 < 0.

Therefore:

−x(u11 − u12 − u21 + u22) + u22 − u12 ≤ 0

⇔ u22 − u12 ≤ x(u11 − u12 − u21 + u22)

If u11 − u12 − u21 + u22 > 0, then

u22 − u12

u11 − u12 − u21 + u22
≤ x

and if u11 − u12 − u21 + u22 < 0, then

u22 − u12

u11 − u12 − u21 + u22
≥ x.

Let
z =

u22 − u12

u11 − u12 − u21 + u22

and y = u11 − u12 − u21 + u22.

Conclusions so far:
(i) If y , 0 then the only candidate p = (x, 1 − x) for an

ESS with 0 < x < 1 is the p with x = z. Therefore, if y , 0
and z < (0, 1), then the only possible ESS’s are (0, 1), (1, 0).
We shall deal with these possibilities, and the case y = 0, but
first let us suppose that

0 < x = z < 1.

(Equivalently, u22 − u12 and u11 − u21 are each non-zero, and
they have the same sign.) Is p = (x, 1 − x) an ESS? (It is a
Nash equilibrium—verification left to the reader.)
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Plugging z = x into (5) and rearranging, we obtain

ε(x − s)2(u11 − u12 − u21 + u22) < 0;

clearly this holds for all ε ∈ (0, 1] and s ∈ [0, 1]\{x}, if and
only if y < 0. Conclusion:
If u11 − u21, u22 − u12 < 0, then

p = (z, 1−z) =

(
u22 − u12

u11 − u12 − u21 + u22
,

u11 − u21

u11 − u12 − u21 + u22

)
is an ESS for this game, and µ(p) = 1. Further, p is the only
possible ESS, in this case, other than (0, 1) or (1, 0).
(ii) Suppose y , 0; we test to see if p = (0, 1) is an ESS by

plugging x = 0 into (5) and letting s roam over (0, 1]. After
rearranging, we see that the inequality that must be satisfied
for all such s is:

εs(u11 − u12 − u21 + u22) < u22 − u12 (6)

Letting s → 0 we see that it is necessary that u22 − u12 ≥ 0.
Therefore we never have that the ESS of case (i) is an alter-
native ESS to (0, 1).
Conclusions, from (6):
If y > 0 and u22 − u12 ≤ 0 then (0, 1) is not an ESS.
If y < 0 and u22 − u12 ≥ 0, then p = (0, 1) is an ESS and
µ(p) = 1.
If y > 0 and u22 − u12 > 0, then p = (0, 1) is an ESS, and

µ(p) = min
[
1,

u22 − u12

u11 − u12 − u21 + u22

]
.

(iii) When y , 0 and x = 1, the situation is equivalent to the
case x = 0: reverse the order of the plays. This amounts to
interchanging u11, u22 and u12, u21,
Conclusions:
If y > 0 and u11 − u21 ≤ 0, then (1, 0) is not an ESS.
If y < 0 and u11 − u21 ≥ 0, then p = (1, 0) is an ESS, and
µ(p) = 1.
If y > 0 and u11 − u21 > 0, then p = (1, 0) is an ESS and

µ(p) = min
[
1,

u11 − u21

u11 − u12 − u21 + u22

]
.

It is somewhat surprising that if both u22 − u12 and u11 − u21
are positive, then both p0 = (0, 1) and p1 = (1, 0) are evolu-
tionarily stable strategies, with stability indices summing to
1.
(iv) Suppose that y = 0. The inequality (5) that must be
satisfied for all s ∈ [0, 1]\{x} for (x, 1 − x) to be an ESS
becomes

(x − s)(u22 − u12) < 0.

We conclude:
If y = 0 and u22 − u12 < 0, then p = (1, 0) is the only ESS,
and µ(p) = 1.
If y = 0 and u22 − u12 > 0, then p = (0, 1) is the only ESS,
and µ(p) = 1.
If y = 0 and u22 − u12 = 0 then there is no ESS.

Let d1 = u11 − u21 and d2 = u22 − u12, so y = d1 + d2. We
summarize our findings in the following table. Remember
that U is non-constant.

Case ESS’s µ

d1, d2 < 0 ( d2
d1+d2

, d1
d1+d2

) 1
d2 ≥ 0
d1 + d2 < 0 (0, 1) 1
d2 > 0,
d1 + d2 > 0 (0, 1) min

[
1, d2

d1+d2

]
d1 ≥ 0,
d1 + d2 < 0 (1, 0) 1
d1 > 0,
d1 + d2 > 0 (1, 0) min

[
1, d1

d1+d2

]
d2 < 0,
d1 + d2 = 0 (1, 0) 1
d2 > 0,
d1 + d2 = 0 (0, 1) 1
d1 = d2 = 0 None
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