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For a natural number n, we find the number of right triangles that have an area equal to n
times perimeter. We begin by showing that the number of primitive right triangles for which
twice the area is n times the perimeter is 2k where k is the number of distinct odd primes in the
canonical factorization of n. As a corollary we show that the number of primitive right triangles
whose area is n times the perimeter is 2k. We then use these results to provide a formula based
on the canonical factorization of n for the number of right triangles whose area is n times the
perimeter.

Introduction

A Pythagorean triple consists of three positive integers
a, b, and c such that a2 + b2 = c2. If the integers a, b,
and c are relatively prime then the triple, (a, b, c), is called
a primitive Pythagorean triple. The integers in a primi-
tive Pythagorean triple make up the side lengths of what is
called a primitive right triangle. Supriya Mohanty et. al.
(1990) define a primitive Pythagorean number to be the area
of a primitive right triangle. They show that all primitive
Pythagorean numbers are divisible by 6; the product of three
consecutive integers n, (n + 1), and (n + 2) with n odd is a
primitive Pythagorean number; and that there are infinitely
many primitive Pythagorean numbers which are products of
two consecutive integers. Russell A. Gordon (2011) explores
the properties of the semiperimeters (half the perimeters) of
primitive right triangles. He uses techniques involving prime
factorization to prove that for every positive integer k, there
exist infinitely many positive integers s such that s is the
semiperimeter of exactly k distinct primitive right triangles.

William Parsons (1984) introduces the idea of relating
a triangle’s area and perimeter, and N.J. Kuenzi and Bob
Prielipp (1976) prove that for every natural number n there
is at least one primitive right triangle whose area is n times
its perimeter. A recent paper by P. Maynard (2005) explores
the number of pythagorean triples whose area is n times the
perimeter. Through the use of a technical lemma he derives
this number and then as a corollary gives the number of prim-
itive triples that satisfy the same condition. Here we take
the opposite approach and begin with the number of primi-
tive triples that satisfy a related condition involving twice the
area. We then use the result on primitive triples to prove the
more general case for non-primitive triangles, discovering a
formula that agrees with the Maynard result.

Part of this work appeared in Ms. Short’s and Mr. Yu Tiamco’s
senior thesis

We begin by reviewing a classical characterization of
primitive Pythagorean triples. Next we prove our first theo-
rem involving the number of primitive triples for which twice
the area is n times the perimeter. As a corollary we obtain the
number of primitive triples whose area is n times the perime-
ter in terms of the canonical factorization of n. In the last
section we extend these results to non-primitive triples.

Euclid’s Conditions
Let (a, b, c) be a primitive Pythagorean triple. It has been

shown that exactly one of the legs of a primitive right trian-
gle has an even length (Maynard, 2005); we let a be the even
length and c be the length of the hypotenuse.

A standard number theory result states that for two rela-
tively prime integers, α and β, with α < β and α + β odd, the
triple given by

a = 2αβ, b = β2 − α2, c = β2 + α2 (1)

is a primitive Pythagorean triple (Shockley, 1967). Further-
more, every primitive Pythagorean triple arises from a unique
pair (α, β) (Shockley, 1967). Together these equations are
also known as Euclid’s formulas, and we will hereafter refer
to the three conditions on α and β
• α and β are relatively prime,
• α < β, and
• α and β have opposite parity

as Euclid’s conditions.
Using Euclid’s formulas, the perimeter and area of a prim-

itive right triangle are given by:

A = αβ(β2 − α2), P = 2β(β + α) (2)

for appropriate α and β.

On the Number of Primitive
Triples with A = nP

We wish to count the number of primitive Pythagorean
triples whose area is n times the perimeter. It will be conve-
nient to work with the slightly altered condition rA = nP for
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natural numbers r and n. We define X(r, n) to be the number
of primitive Pythagorean triples that satisfy rA = nP.

Using Euclid’s conditions, we can transform the relation
rA = nP into a condition on α and β. We obtain

rα(β − α) = 2n. (3)

We see that r must divide 2n in order for X(r, n) to be non-
zero. Setting r = 2 gives the most natural case which leads
us to:

Definition 1. Let n be a natural number. An Area-Perimeter,
or AP, pair for n is a pair (α, β) such that
• α and β are relatively prime,
• α < β,
• α and β have opposite parity, and
• α(β − α) = n.

By Euclid’s formulas, distinct AP pairs yield distinct
primitive right triangles (Shockley, 1967). Furthermore each
primitive right triangle gives rise to an AP pair. This one-to-
one correspondence allows us to count the number of primi-
tive Pythagorean triples that satisfy 2A = nP by counting the
number of AP pairs.

We write n = 2m∏k
i=1 pei

i where pi are distinct odd primes
and the ei are positive integers and k is the number of distinct
odd primes in the canonical factorization of n. Substituting
this value for n into (3) with r = 2 we obtain,

α(β − α) = 2m
k∏

i=1

pei
i . (4)

By counting AP pair solutions to (4) we can find X(2, n).
When counting AP pairs, the following Lemmas become
useful:

Lemma 1. If (α, β) is an AP pair for n, the two terms α and
(β − α) are relatively prime.

Proof. Let n ∈ N and let (α, β) be an AP-pair for n. Assume
α and (β − α) have a common divisor q > 1. Then α = qr
and β − α = qs for some integers r and s. Solving for β, we
obtain β = qs + qr = q(s + r). Now α and β have a common
divisor q > 1, a contradiction. �

Lemma 2. If (α, β) is an AP pair for even n, then α is even.

Proof. Let n ∈ 2N and let (α, β) be an AP-pair for n. As-
sume α is odd. By the definition of an AP-pair, the product
α(β−α) = n is even as n is even. But then β−α must be even
which implies that α and β are not of opposite parity. �

We are now prepared for proving the main result of this
section.

Theorem 1. Let n ∈ N be given and write n = 2m∏k
i=1 pei

i
where pi are distinct odd primes. Then there are 2k primitive
triples which satisfy 2A = nP. That is,

X(2, n) = 2k.

Proof. Let n be a natural number and write n = 2m∏k
i=1 pei

i .
We need to count the number of integral solutions to equation
(4). By Lemma 1 if pi|α, then pei

i |α. Furthermore by Lemma
2 we know that 2m|α. So our problem reduces to counting
the number of ways of splitting the odd primes between α
and β − α. There are 2k different ways of doing this. �

We also have the following result which is a direct corol-
lary of Theorem 1.

Corollary 1. For every natural number n where n has k dis-
tinct odd primes in its canonical factorization, there exist ex-
actly 2k distinct primitive right triangles whose area equals
n times its perimeter.

Proof. The condition A = nP is equivalent to 2A = (2n)P
and by Theorem 1 there are exactly 2k primitive triangles
which satisfy this condition. �

We note that appropriate integral solutions to (3) with
r = 1 by way of (1) produce the primitive triples that satisfy
A = nP. For example take n = 7. The relation A = 7P is
equivalent to 2A = 14P which implies we need AP pairs that
solve α(β − α) = 14. There are two given by (α, β) = (2, 9)
and (α, β) = (14, 15) which yield the primitive Pythagorean
triples (36, 77, 85) and (420, 29, 421) respectively. Each of
these triples’ area is 7 times its perimeter.

Examining a list of Pythagorean triples, one may notice
that the triples (12, 5, 13) and (8, 6, 12) have the property that
their areas are equal to their respective perimeters; note that
the latter triple is not primitive. This observation motivated
William Parsons to look for other right triangles with this
property. He proves a theorem that states that no other of
these triangles exists (see (Parsons, 1984)) and invites the
reader to prove the following:

For every natural number n, there is at least one primitive
Pythagorean triangle in which the area equals n times the
perimeter.

Kuenzi and Prielipp (1976) provided a proof by showing
that the primitive Pythagorean triple (8n2 + 4n, 4n + 1, 8n2 +
4n + 1) has an area equal to n times its perimeter for every
natural number n.

Casting the Kuenzi and Prielipp result into our notation,
we see that their triple corresponds to AP pair (2n, 2n + 1).
That is, an integral solution to (3) with r = 1 is given by
α = 2n and β − α = 1.

On the Number of Triples with
A = nP

Maynard (2005) counts the number of Pythagorean trian-
gles whose area is a multiple of the perimeter. He uses the
Pythagorean Theorem directly to prove a technical lemma
which gives relationships between the side lengths of the tri-
angle and the multiplicative factor. He then uses these rela-
tions to count the number of Pythagorean triples whose area
is n times the perimeter directly. As a direct consequence of
this earlier work, Maynard then gives the number of primitive
triples that satisfy A = nP.
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We take an alternative approach towards the same results.
We use our counts on the number of primitive triples that sat-
isfy 2A = nP as a means of building towards the total number
of triples (primitive or not) that satisfy A = nP.

Let natural number n be given. Suppose (a, b, c) is a
Pythagorean Triple that satisfies A = nP where A is the area
and P is the perimeter. Then we can write

(a, b, c) = (ra′, rb′, rc′)

with (a′, b′, c′) primitive and r is the common scaling factor.
Because (a, b, c) satisfies A = nP we conclude that (a′, b′, c′)
satisfies

rA′ = nP′ (5)

where A′ and P′ are the area and perimeter for the primi-
tive triple. Furthermore by Euclid’s conditions the primitive
triple has an α′ and β′ that correspond to it. Plugging (2) into
(5) and simplifying we obtain:

rα′(β′ − α′) = 2n.

We can conclude that if (a, b, c) satisfy A = nP then the scal-
ing factor r divides 2n. Moreover, for this triple there exists
a corresponding primitive triple which satisfies the related
condition (5).

Alternatively, let r divide 2n and consider primitive triples
that satisfy 2A = 2n

r P. Clearly these primitive triples can
be scaled up to non-primitive triples for which the area is n
times the perimeter. This leads us to:

Lemma 3. A triple (a, b, c) satisfies A = nP if and only if
(a, b, c) satisfy the following conditions:

1. (a, b, c) = (ra′, rb′, rc′) with (a′, b′, c′) primitive.
2. r|2n.
3. rA′ = nP′ where A′ and P′ are the area and perimeter

of the associated primitive triple (a′, b′, c′).

So to count the number of triples that satisfy A = nP it
suffices to count the number of primitive triples that satisfy
the three conditions given in Lemma 3. As before, we define
X(r, n) to be the number of primitive Pythagorean triples that
satisfy rA = nP where A is the area and P is the perimeter of
the corresponding right triangle.

Lemma 4. Let r and n be integers so that r|2n and let p be an
odd prime that does not divide n. Let e be a positive integer
and let i be an integer between 0 and e inclusive. Then

X(pir, pen) =

 X(r, n) i = e,

2X(r, n) i < e.

Proof. The equation pirA = penP is equivalent to 2A =
pe−i 2n

r P. By Theorem 1, the number of primitive triangles
that satisfy this last equation depends on the number of dis-
tinct odd primes in the canonical factorization of pe−i 2n

r . If
i = e then the number of distinct odd primes remains un-
changed, if i < e this number increases by one, meaning an
additional power of 2. �

We are now ready for the main result.

Theorem 2. Let n = 2m∏k
i=1 pei

i . Then the number of
Pythagorean triangles whose area is n times the perimeter
is given by:

(m + 2)
k∏

i=1

(2ei + 1). (6)

Proof. Let natural number n be given. We want to count
the number of triples that satisfy A = nP. Using Lemma
3, for each factor r of 2n it suffices to count the number of
primitives that satisfy rA′ = nP′ where again A′ and P′ are
the area and perimeter of the corresponding primitive. By
Theorem 1, the number of these primitives depends on the
number of distinct odd primes dividing 2n/r. The difficulty
comes in grouping the divisors of 2n in a meaningful way
to make this calculation simple. To handle this difficulty we
will use induction on k, the number of distinct odd primes in
the canonical factorization of n.

For k = 0, we have to count the number of pythagorean
triples which satisfy A = 2mP. There are exactly m + 2 fac-
tors of 2n = 2m+1. For each of these factors, there is a unique
primitive triple that satisfies rA′ = nP′ by Theorem 1. This
finishes the base case.

Now assume that for every n with k−1 distinct odd primes
in its canonical factorization that equation (6) holds. Let n
be a natural number with exactly k distinct odd primes in its
canonical factorization. As before we write:

n = 2m
k∏

i=1

pei
i .

We isolate a single odd prime, say p1 and define u = n/pe1
1

so that u has exactly k−1 distinct odd primes in its canonical
factorization. Now the number of triples that satisfy A = nP
is given by:

∑
r|2n

X(r, n) =
∑
s|2u

 e1∑
i=0

X(spi
1, pe1

1 u)


=
∑
s|2u

(2e1 + 1)X(s, u)

= (2e1 + 1)
∑
s|2u

X(s, u).

Here we have used Lemma 4. Now using the induction hy-
pothesis we obtain the desired result. �

Maynard (2005) gives the same result in terms of τ(x), the
multiplicative function that counts the divisors of x. May-
nard proves that the number of Pythagorean triples that sat-
isfy A = nP is given by 1

2τ(8n2). Using the canonical fac-
torization of n it is not difficult to show that our result agrees
with the Maynard theorem.
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