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Abstract
A mathematical model will be developed for simulating wa-

ter distribution in Alabama remote city systems that have water
towers. The objective of the proposed model is to optimize water
delivery in remote city systems. The inputs to the model include
the water source data, distribution facility capacity, delivery site
networks, and other constraints. The output will be an optimized
network of delivery routes, piping systems, optimum pump/power
requirements, efficient delivery rates and use requirements. This
will also maintain maximum capacity, lowest power requirements,
greatest reliability and shortest down time. We assume that there
is a constant pressure at the distribution point where the water
tower is situated.

The objective functions to be optimized can be any or all of the
following: smoothness of operation, lowest power, optimum pump-
ing capacity, reliability, lowest down time, and total cost. Virtually
any other efficiency function can be included. In the objective func-
tion, practical constraints can also be used including the following:
size of available pumps, pipe diameters and lengths, limitations on
station capacity, and number of delivery sites (virtually any oth-
ers).

Critical Need Statement

Efficient water delivery from a distribution control center to a
large number of delivery sites is currently managed without proper
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consideration of the water flow hydrodynamics. Costs are high,
reliability is compromised, and large numbers of personnel are re-
quired for smooth operation. Customer supply needs are increasing
rapidly. A hydrodynamics-based mathematical model can optimize
the delivery system by running parametric cases overnight and au-
tomatically designing a more efficient overall delivery process. The
software developed herein has the potential for designing systems
which solve each of these current problems.

Results and Benefits

The proposed model will be research-based, but we will develop
a mathematical model for a practical application. The results are
expected to be an optimization model of water delivery systems.
The benefits include lower overall costs, increased reliability, and
more efficient operation of facilities and satisfied customers.

Nature, Scope and Objectives

The objectives of this research are to develop, code, and apply
an aerospace methodology to the flow of water in a city delivery
system. A finite element optimization method used by engineers
in the aerospace industry will be applied to modeling city water
delivery networks. The following Tasks will be required:

Task 1. Modify Governing Equations for Water Flow including
Incompressible Navier-Stokes and Adjoint Equations.

Task 2. Write Visual Basic code implementing optimization algo-
rithm.

Task 3. Adapt existing aerospace solvers to water flow optimiza-
tion.

Task 4. Compute a test case for a typical Alabama city system
and compare to data.

Methods, Procedures and Facilities

The following section gives details of the hydrodynamics mod-
eling to be used in this project. We give the basics of a finite
element technique, the hydrodynamics equations, the optimization
equations, and the computer software plan. The research is based
on previous work done in References 1-5.
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Finite Element Model

Figure 1 shows a schematic of a generic water distribution con-
trol center. The basic components are the water sources, the con-
trol center, the delivery network, and the delivery sites. The para-
meters in the problem include: number and size of water sources,
storage capacity of control center, power and pumping capability,
number of delivery sites and daily water requirements of each site.

   Water distribution
      center control
 Q = storage capacity

n = 1

n = 2
n = 3

n = . . . n = N !1
n = N

Delivery Sites

n = delivery site number
N = total sites
Rn = Water requirement for site n
Q = storage capacity of distribution center

Water sources 1, 2, 3, . . . , Ws
Total capacity Wq

Ln = length of delivery systems
Pn = pumping requirement for site n
Pw = power requirement for site n

Figure 1

Figure 2 is for illustration of a typical finite element model. The
actual model is complex and is computer generated. Each compo-
nent of the generic system is “discretized” into a fixed, and finite,
number of cells called elements. The parameters of the problem
are approximated on the GRID of points. See References 3-4.
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Finite Element Model of Water Distribution System
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Figure 2. Finite Element Model of Water Distribution System

The relative size of the grid is important as the accuracy of the
model increases and the number of elements increases. A typical
model will contain a few thousand elements for this case. For some
aerospace solutions, we have used 1 Million elements [1], and the
fluid flow modeling via a stream function [5].

Hydrodynamics Equations

The Governing equation for the hydrodynamics of water flow
is given by the incompressible Navier-Stokes equations. For this
modeling effort, we use the time dependent, one space dimension
set of equations. With the following definition of variables, the
hydrodynamics equation is given below.

M = ρU = mass flow rate of water
U = velocity flow t = time
ρ = density of water x = distance
P = water pressure
µ = viscosity of water

Navier Stokes Equation: ∂M
∂t + U

∂M
∂x = −∂P

∂x +
µ
ρ
∂2M
∂x2
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Optimization Equations

The optimization algorithm is developed by defining an “ob-
jective function” with a set of “constraints”. The parameters in
the optimization problem are:

wi = importance function
fi = efficiency objective function
gi = constraints
λi = Lagrange multiplier

The objective function to be optimized is then given as follows:

F =
kX
i=1

wifi +
mX
j=1

λigi

where k is the number of efficiency functions, and m is the number
of constraints. The optimum is reached by using a mathematical
minimization principle obtained as follows:

∂F

∂fi
= 0

The functions fi are referred to as the efficiency parameters and
can include such items as:

fi (i =) definition

1 a measure of smoothness of operation
2 lowest power usage
3 optimum pumping capacity
4 greatest reliability
5 total cost

Likewise, the constraint functions gi can include:

gi (i =) definition

1 maximum allowed power
2 size of available pumps
3 manufacturablility of components
4 limitations on storage capacity
5 finite number of delivery sites

The weights wi are called the “importance parameters.” They
can be assigned constant values between 0 and 1 according to their
perceived importance. For example, each can be set to 0.20 and
give equal importance to all variables. Setting one of them to
zero gives it no importance, etc. The sum of parameters must be
1.0. The parameters λi are termed Lagrange multipliers and are
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used in classic mathematics to enforce constraints in the calculus
of variations.
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