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Abstract: We give an explicit formula for the point of intersection
of two lines in space.

A common exercise in second or third semester Calculus books
is to determine if two lines in space are parallel, skew, or inter-
secting; and if they intersect, to find the point of intersection. The
students usually have to solve a system of 3 equations in 2 variables
to answer these questions. Even though that is simple to do, it is
inefficient from a computational point of view. Our purpose in this
note is to give a criterion that tells if two lines intersect, and if they
do, we give an explicit formula for the point of intersection.

A line L in R3 is determined by a point P0 = (x0, y0, z0) on
the line and a vector v parallel to the line. We will think of P0 as
a vector x0. The length of a vector v will be denoted by |v|, while
the dot and cross products of two vectors v, and v0 will be denoted
respectively by, v · v0, and v × v0. The next lemma is a simple
result that gives a condition which guarantees that two lines are
skew.

Lemma 1. The lines L: x0,v and L0: x00,v0 in R3 lie in the
same plane if and only if

(x0 − x00) · (v× v0) = 0.
In particular, the lines L: x0,v and L0: x00,v

0 are skew if and only
if (x0 − x00) · (v× v0) 6= 0.

Proof : First assume that L and L0 lie in the same plane. If L
and L0 are parallel, then the equation is trivial since v×v0 = 0, so
assume that L and L0 are not parallel. It follows that (v × v0) is
perpendicular to the plane containing L and L0. Since x0−x00 lies in
the plane containing L and L0, it follows that (x0−x00)·(v×v0) = 0.

Now assume that (x0−x00)·(v×v0) = 0, and consider the plane
with equation (x0 − x00) · (v× v0) = 0. This plane clearly contains
L0. We will show that it also contains L. Writing x(t) = x0 + tv
for the equation of L, we have:



Spring/Fall 2008 31

(x(t)− x00) · (v × v0) = (x0 − x00 + tv) · (v× v0)
= (x− x00) · (v× v0) + tv · (v× v0)
= 0 + 0 = 0,

which finishes the proof.
The following corollary gives a condition that guarantees that

two lines intersect.

Corollary 1. If the lines L: x0,v and L0: x00,v
0 in R3 are

such that v× v0 6= 0, and (x0 − x00) · (v× v0) = 0, then L∩L0 6= ∅
Proof : From the previous lemma, we know that the lines lie in

the same plane, so they are either parallel or they intersect. Since
v × v0 6= 0, the lines can’t be parallel, so they must intersect, and
that completes the proof.

The next result gives an explicit formula for the point of inter-
section of two lines that satisfy the conditions of the last corollary.
For this result, we let

v̂ =
v

|v| ,
and

v̂⊥ =
v0 − (v0 · v̂)v̂
|v0 − (v0 · v̂)v̂| .

Note that v̂ is the unit vector in the direction of v, while v̂⊥
is the component of v0 orthogonal to v.

Theorem 1. If the lines L: x0,v and L0: x00,v0 in R3 are
such that L ∩ L0 6= ∅, then the point of intersection is given by

x0 +
[(x00 − x0) · v̂](v0 · v̂⊥)− [(x00 − x0) · v̂⊥](v0 · v̂)

v0 · v̂⊥ v̂

Proof : If x0 = x00, the result is trivial, so assume that x0 6= x00.
First, we note that since (x0−x00) · (v×v0) = 0, the vector x0−x00
lies in the plane spanned by v and v0. Writing v0 = v01v̂ + v

0
2v̂⊥,

we may write x00 − x0 = av̂ + bv̂⊥. Translating the origin to x0,
we may write the equations of the lines in the new system as

x(s) = s|v|v̂
x(t) = x00 − x0 + tv0 = (a+ v01t)v̂ + (b+ v02t)v̂⊥.

The point of intersection of the lines is then given by

s|v| = a+ v01t
0 = b+ v02t.
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The solutions are

s =
av02 − bv01
v02|v|

t = − b
v02

These solutions are clearly consistent, and the point of intersection
is then

x0 + x(s) = x0 +
av02 − bv01

v02
v̂,

where the various parameters are given by

v̂ =
v

|v|

v̂⊥ =
v0 − (v0 · v̂)v̂
|v0 − (v0 · v̂)v̂|
v01 = v

0 · v̂
v02 = v

0 · v̂⊥
a = (x00 − x0) · v̂
b = (x00 − x0) · v̂⊥.

Using these, the point of intersection is then given by

x0 +
[(x00 − x0) · v̂](v0 · v̂⊥)− [(x00 − x0) · v̂⊥](v0 · v̂)

v0 · v̂⊥ v̂,

which finishes the proof.
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