
Solutions and Discussions

Problem 2 – Volume 28, No. 1, Spring 2004

Prove that (p− 1)! + 1 is divisible by p for each prime number p.
Solution

Raynold Gilles, Senior, Troy University, Troy, AL.

We must consider two cases

Case 1: p = 2

If p = 2, then (p−1)!+1 = 2, and clearly p divides (p−1)!+1.
Case 2: p is prime and different from 2.

We intend to show that (p − 1)! ≡ −1mod p, or equivalently,
that (p− 1)!+1 ≡ 0mod p, from which it will follow that p divides
(p− 1)! + 1.

To show that (p − 1)! ≡ −1mod p, we appeal to theorems
involving cyclic groups. It is well known that if p is prime, then
the set {1, 2, 3, . . . , p− 1} forms a cyclic group under multiplication
modulo n. The group is denoted (Zp, ·) . For example, (Z5, ·) is a
cyclic group generated by both 2 and 3. To see that 2 is a generator,
note that 21 = 2, 22 = 4, 23 = 3, and 24 = 1. Similarly, 31 = 3,
32 = 4, 33 = 2, and 34 = 1. For future reference, we make the
observation that inherent in (Zp, ·) being a group is the fact that
it has no zero divisors.

Applying the theory of cyclic groups to our problem, we note
that (p−1)! = 1 ·2 ·3 · . . . · (p− 2) · (p− 1) . Note that (p−1)! is the
product in which each element of the group (Zp, ·) appears exactly
once as a factor. Since (Zp, ·) is cyclic, it has a generator g having
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the property that:

gk1 = 1 for some k1 ∈ {1, 2, 3, . . . , p− 1}
gk2 = 2 for some k2 ∈ {1, 2, 3, . . . , p− 1}
gk3 = 3 for some k3 ∈ {1, 2, 3, . . . , p− 1}
...

...
...

...
gkp−1 = p− 1 for some kp−1 ∈ {1, 2, 3, . . . , p− 1}

Said differently:

g1 = some element in {1, 2, 3, . . . , p− 1}
g2 = some other element in {1, 2, 3, . . . , p− 1}
...

...
...

gp−1 = the remaining element in {1, 2, 3, . . . , p− 1} .

Thus, (p− 1)!mod p ≡ 1 · 2 · 3 · . . . · (p− 2) · (p− 1)mod p
=
¡
g1 · g2 · g3 · . . . · gp−1¢

= g1+2+3+...+p−1 = g
(p−1)p

2 =
³
g
p−1
2

´p
i.e., (p−1)!mod p =

³
g
p−1
2

´p
, where g is a generator of (Zp, ·) .

Since p is odd, the desired result, (p − 1)! ≡ −1mod p, will
follow – provided that we can show that g

p−1
2 = −1. Note that

since g is a generator of (Zp, ·) , gp−1 = 1. (In fact, p − 1 is the
smallest positive power of g that yields 1.)

Since gp−1 = 1, it follows that:³
g
p−1
2

´2
= 1

⇒
³
g
p−1
2

´2
− 1 = 0

⇒
³
g
p−1
2 + 1

´³
g
p−1
2 − 1

´
= 0.

Since (Zp, ·) has no zero divisors, we can conclude that either:
g
p−1
2 = −1 or g p−12 = 1.

Since p − 1 is the least positive power of g that yields 1, it
follows that g

p−1
2 = −1.

From this, the desired result follows.
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One may wonder whether our proposition holds for all nat-
ural numbers p. (i.e., Is (p − 1)! + 1 is divisible by p for each nat-
ural number p?) The answer, as you might expect, is “no.” As
a counter-example, consider p = 9. We compute (9 − 1)! + 1 =
40321 = 4480 · 9 + 1. Clearly, (p − 1)! + 1 is not divisible by p for
p = 9. Having established that counter-examples exist, we might
wonder where the preceding proof “breaks down” in the case of a
composite number such as p = 9. To answer this question, con-
sider the set {1, 2, 3, . . . , 8} under the operation of multiplication
modulo 9. We note that 3 · 6 ≡ 0mod 9 (i.e. 3 and 6 are zero divi-
sors.) Note also that the product 3 · 6 = 0 is not an element of the
prospective group (Z9, ·) . Since {1, 2, 3, . . . , 8} is not closed under
multiplication modulo 9, not only is (Z9, ·) not a cyclic group, it is
not a group, period. In reviewing the proof for the case in which
p is prime, one will note that proof relied heavily on the facts that
(Zp, ·) is a cyclic group and that (Zp, ·) has no zero divisors. It is
at these places that the proof “breaks down.”

Problem 7 – Volume 26, No. 2, Fall 2002

Given that F (x) = tan (x) , prove that the nth derivative F (n)(0) ≥
0 for every n ≥ 0.
Solution

William McCurdy, Senior, Troy University, Troy, AL.

We begin by proving a lemma.

Lemma 1: The derivative of any expression of the form
c secm(x) tann(x)with c≥0 and m,n≥0 is an expression comprised
solely of terms of the form ci sec

mi (x) tanni (x) with ci ≥ 0 and
mi, ni ≥ 0.
Proof. Using the product rule, note that: d

dx [c sec
m (x) tann (x)]=

cm secm (x) tann+1 (x) + cn tann−1 (x) secm+2 (x) for m,n ≥ 0.
i.e., d

dx [c sec
m (x) tann (x)] = c1 sec

m1 (x) tann1 (x)+

c2 sec
m2 (x) tann2 (x) with c1, c2 ≥ 0 and m1, n1,m1, n1 ≥ 0.

We now proceed to prove a second lemma, from which the
desired result will follow.

Lemma 2: If F (x) = tan (x) , then F (n) (x) =P2n−1

i=1 ci sec
mi (x) tanni (x) with ci ≥ 0 and mi, ni ≥ 0.
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Proof. We prove the lemma by induction on n, the order of the
derivative.

For n = 0, F (n)(x) = F (0) (x) = tan (x) .

For the induction step, suppose that our proposition holds true
for n = k. To compute F (k+1) (x) , we compute d

dx

£
F (k) (x)

¤
=

d
dx

hP2k−1

i=1 ci sec
mi (x) tanni (x)

i
, by our induction hypothesis.

Since the derivative of a sum is computed “term by term,”
Lemma 1 tells us that upon differentiation, each term
ci sec

mi (x) tanni (x) yields a pair of terms, ci1 sec
mi1 (x) tanni1 (x)+

ci2 sec
mi2 (x) tanni2 (x) with ci1 , ci2 ≥ 0 and mi1 , ni1 ,mi2 , ni2 ≥ 0.

Renumbering the subscripts, we have:

F (k+1) (x) =
d

dx

h
F (k) (x)

i
=

2kX
i=1

ci sec
mi (x) tanni (x) .

Thus, F (n) (x) =
P2n−1

i=1 ci sec
mi (x) tanni (x) with ci ≥ 0 and

mi, ni ≥ 0.
Since secmi (0) = 1 and tanni (0) = 0, each term of F (n) (0) =P2n−1

i=1 ci sec
mi (0) tanni (0) is non-negative. Hence, F (n) (0) ≥ 0

for every n ≥ 0.

Problem 7 – Volume 29, No. 1&2, Spring/Fall 2005

Draw six line segments through these 16 points, which are arranged
in a grid. Do not lift your pencil from start to finish.
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Solution
Jenny Horton, Senior, Troy University, Troy, AL.

Having seen a solution, one might wonder if it is possible to
solve the problem using fewer than six line segments. Since the
16 points are arranged in a 4 × 4 grid, no line segment (vertical,
horizontal, or diagonal) can contain more than 4 points. So clearly,
the task cannot be completed with fewer than four line segments.
Case 1: 4 Segments

Since no line segment can contain more than four points, each
line segment must contain exactly four points, and in each case,
none of these four points must be contained by any other line seg-
ment. The line segments cannot all be vertical, since these cannot
be drawn without having the pencil leave the paper. Similarly,
the line segments cannot all be horizontal. The lines cannot all be
diagonal, as only two diagonal lines contain 4 points. No combina-
tion of diagonals and horizontals will work as a diagonal containing
4 points will contain a point from each row. Thus, if one of the
line segments is diagonal, no horizontal line segment can contain 4
points in such a way that none of the 4 points are contained in and
“claimed” by another line segment. Similarly, no vertical/diagonal,
vertical/horizontal, or vertical/horizontal/diagonal combination of
line segments will work.
Case 2: 5 Segments

By the Pigeon Hole Principle, at least one line segment must
contain at least four points (hence exactly four points) that are
not accounted for on any other line segment. By reasons stated
in the previous case, no other line segment can contain 4 points,
This implies that the remaining 4 line segments must each contain
exactly 3 points that are not accounted for on any of the other line
segments. Thus, any three successive line segments can contain,
at most, 4 + 3 + 3 = 10 distinct points. Note from the diagrams
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below, that any combination of vertical, horizontal and diagonal
line segments containing 10 distinct points is such that the next
line segment drawn must contain only 2 points not accounted for
on other line segments. Thus, our problem cannot be solved using
5 line segments.

One may wonder what kind of bounds can be placed on the
number of line segments required to solve the problem for an ar-
birary n×n grid for n ≥ 3. From the diagram below, we can easily
see that no more than 2n − 1 line segments (e.g., n vertical and
and n− 1 horizontal) are required in order to pass through all n2
points.
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Having established an upper bound on the least number of line
segments required, we claim that for an n × n grid with n ≥ 3,
no more than 2n− 2 line segments are required. Furthermore, we
claim that for an n× n grid with n ≥ 3, all points of the grid can
always be covered by 2n− 2 line segments. We prove the claim by
induction on n.

Observe, from the picture below, that in the 3 ³ 3 case, all
points of the grid can be covered by 2n − 2 = 4 line segments.
Furthermore, for reasons similar to those given in the 4 ³ 4 case,
no three sucessive line segments (drawn without lifting the pencil
from the paper) can contain more than 3+2+2 = 7 points. Thus,
our proposition is true for n = 3.

Start

Note further, that the diagram for n = 3 can be embedded in
a 4× 4 grid in such a way that by extending the last line segment
diagonally downward, adding a line segment going upward, and
following up with a line segment going to the left (see below), we
have a diagram in which all 16 points of the 4 × 4 grid can be
contained by 2n − 2 = 6 line segments. Furthermore, we have
already shown that the points of a 4× 4 grid cannot be covered by
fewer than 2n− 2 = 6 line segments.
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Start

For the induction step, note that if our proposition is true for
n = k ≥ 4, then our diagram can be embedded in an (k + 1) ×
(k + 1) grid in such a way that:

(1) the last line segment of the diagram for n = k can be
extended horizontally or vertically by one unit and

(2) two more line segments of length k + 1 and k can be
drawn to form a diagram in which all (k + 1)2 points are
contained by the line segments. Since the diagram for the
k × k grid had 2k − 2 line segments, the diagram for the
(k + 1)× (k + 1) grid has (2k − 2)+2 = 2 (k + 1)−2 line
segments.

The extension of a diagram for k = 4 to a diagram for k+1 = 5 is
shown below.

Start

It remains to show that our (k + 1) × (k + 1) grid can’t be
covered by fewer than 2 (k + 1) − 2 line segments. Generalizing
an observation made in the 4 × 4 case, any three successive line



Spring/Fall 2008 101

segments can contain, at most, (k + 1)+ k+ k distinct points, and
any two successive line segments can contain, at most, (k + 1) + k
distinct points. We will quickly note that the last two line segments
that were added to the k × k diagram to extend it to a (k + 1) ×
(k + 1) diagram contain (k + 1) + k distinct points. No two line
segments in a (k + 1) × (k + 1) grid can contain more points. So
if we’re looking to reduce the total number of line segments, we
must consider the “original” k × k diagram that was embedded in
the (k + 1)× (k + 1) grid. By our induction hypothesis, the k × k
diagram is covered by 2k − 2 line segments, and this is the least
number of line segments that can cover the k×k grid. So if we were
to remove one of the line segments covering the “original” k × k
grid, the resulting uncovered points would have to be covered by
the last two line segments that were added to the “original” k × k
diagram to extend it to a (k + 1)× (k + 1) diagram. But these two
line segments already contain as many points as two line segments
in a (k + 1)× (k + 1) grid can possibly contain, and hence cannot
be used to cover any points from the “original” k × k diagram.

Solutions, comments, and discussions should be sent to:

Hussain Talibi Pat Rossi
Department of Mathematics Department of Math & Physics
Tuskegee University 232 MSCX
Tuskegee, AL 36088 Troy State University
(334)-727-8212 Troy, AL 36082
talibi@tuskegee.edu (334)670-3406

FAX (334)670-3796
prossi@troyst.edu



102 Alabama Journal of Mathematics

ACTM Fall Forum 2009

Exploring Math from Many Angles

October 15-16

Auburn University Montgomery

Thursday, October 15 - Starting at 1 pm (Registration Begins
at 12)

For more information go to http://www.alabamamath.org

Speaker proposal forms are also available at the address above.


