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Abstract. Here, we use only the simple part of the new
method of induction, and we obtain a simple conjecture
which is simultaneously stronger than the Goldbach Con-
jecture and the Twin Prime conjecture; and, using this sim-
ple conjecture, we explain why it is natural to conjecture
that the Twin Prime Conjecture can be seen as an obvious
special case of the Goldbach Conjecture.

Introduction

The Goldbach Conjecture (See [1], [2], [3], or [5]) states that
every even integer e ≥ 4 is of the form e = p + p0, where (p, p0) is
a pair of primes. Such being the case, we say that e is goldbach,
if e ≥ 4 is an even integer of the form e = p + p0, where (p, p0)
is a pair of primes. We say that an even integer integer e ≥ 4 is
goldbachian if every even integer υ with 4 ≤ υ ≤ e is goldbach.
Observation: Let n > 2 be an integer. Then the following are
equivalent:

(i) 2n+ 2 is goldbachian.
(ii) 2n is goldbachian and 2n+ 2 is goldbach.

We recall that an integer t is a twin prime (See [4], [5], or
[6]), if t ≥ 3 is prime and if t−2 or t+2 is also prime. For example:
1000000000061 and 1000000000063 are twin primes (See [5]). The
Twin Prime Conjecture states that there are infinitely many twin
primes.

For every integer n ≥ 2, we define G0 (n) , g0n, P (n) , pn, T (n) ,
and tn as follows:
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G0 (n) = {g0 : 1 < g0 ≤ 2n, and g0 is goldbachian}
g0n = maxg0∈G0(n) g

0

P (n) = {p : p is prime and 1 < p < 2n}
pn = maxp∈P (n) p

T (n) = {t : t is a twin prime and 1 < t < 2n}
tn = maxt∈T (n) t

Observation: Let n ≥ 2 be an integer, and consider g0n+1. We
have the following three properties:

(i) g0n+1 ≤ 2n+ 2.
(ii) g0n+1 < 2n+ 2 if and only if g0n+1 = g0n.
(iii) g0n+1 = 2n+ 2 if and only if 2n+ 2 is goldbachian.

Let A be the following assertion:

Assertion A: For every integer m ≥ 2, the following two proper-
ties, w(A,m) and o(A,m), are equivalent:

w(A,m) : 2m+ 2 is Goldbach

o(A,m) : tm ·
P
t∈T (m) t > pm.

Using only the simple part of the new method of induction, we
prove a theorem which immediately implies the following result R:

Theorem R: Suppose that Assertion A holds. Then the Twin
Prime Conjecture and the Goldbach Conjecture simultaneously
hold.

Theorem R clearly says that Assertion A is stronger than ei-
ther the Twin Prime Conjecture or the Goldbach Conjecture and,
using the previous theorem, we explain why it is natural to conjec-
ture that the Twin Prime Conjecture is only a special case of the
Goldbach Conjecture.

1. The Proof of a Theorem Which Implies Theorem R

Before we state and prove our main theorem, we must intro-
duce two simple definitions. First, let n ≥ 2 be an integer. We
say that z (n) is a cache of n if z (n) is an integer such that
0 ≤ z (n) < n. (For example, suppose that n = 13. Then z (n) is a
cache of n if and only if z (n) ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} .)
Second, for every pair of integers (n, z (n)) such that n ≥ 2 and
0 ≤ z (n) < n, we define z (n, 2) as z (n, 2) ≡ z (n)mod 2.

The following theorem immediately implies Theorem R, stated
in the Introduction.
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Theorem 1: Let (n, z (n)) be a pair of integers such that n ≥ 5
and z (n) is a cache of n. Suppose also that Assertion A holds.
Then we have the following:

(1) If z (n) ≡ 0mod 2, then tn ·
P

t∈T (n) t > pn − z (n)
(2) If z (n) ≡ 1mod 2, then 2n+ 2 is goldbachian.

Remark 1: If we suppose that Theorem 1 is false, then there
exists a pair (n, z (n)) such that (n, z (n)) is a counter-example of
Theorem 1 with n minimal and, given n, z (n, 2) is minimal. A
consequence of the existence of such a pair is that, by minimality
of z (n, 2) , every pair (n, f (n)) such that f (n) is a cache of n and
f (n, 2) < z (n, 2) is not a counter-example of Theorem 1.

To prove Theorem 1, we use the following lemma.

Lemma 1: Suppose that n = 5. Then Theorem 1 is satisfied.

Proof. Indeed, since n = 5, clearly z (n) ∈ {0, 1, 2, 3, 4} ,
and it suffices to show that Theorem 1 is satisfied for all z (n) ∈
{0, 1, 2, 3, 4} . So, we have to consider two cases: namely, the case
where z (n) ∈ {0, 2, 4} , and case where z (n) ∈ {1, 3} .

Case 1: z (n) ∈ {0, 2, 4} . Clearly z (n) ≡ 0mod 2 and we must
show that property (1) of Theorem 1 holds. Recalling that n = 5,
clearly T (n) = {3, 5, 7} , tn = pn = 7, and tn ·

P
t∈T (n) t > pn. (In

particular, tn ·
P

t∈T (n) t > pn− z (n)); so property (1) of Theorem
1 holds, and Theorem 1 is satisfied.

Case 2: z (n) ∈ {1, 3} . Clearly z (n) ≡ 1mod 2 and we must
show that property (2) of Theorem 1 holds. Recalling that n = 5,
we have 2n+2 = 12 and 2n+2 is goldbachian (because 12 is clearly
goldbachian). Property (2) of Theorem 1 holds, and Theorem 1 is
satisfied. ¤

Proof of Theorem 1: Otherwise, let the pair (n, z (n)) be a
counter-example such that n is least and z (n, 2) is least (Such a
pair exists by Remark 1). Then, we have the following observations:

Observation 1.1: Note that n ≥ 6, pn and pn−1 are odd,
pn ≤ 2n− 1, and 2n is goldbachian.

To see this, note that n ≥ 6 by using Lemma 1; so pn and
pn−1 are odd, and clearly pn ≤ 2n− 1. Now. to prove Observation
1.1, it suffices to show that 2n is goldbachian. For a fact, 2n is
goldbachian. Consider the pair (m, z (m)) such that m = n −
1 and z (m) = 1; since n ≥ 6 (by Lemma 1), clearly m ≥ 5,
z (m) is a cache of m, and m < n. Then, by the minimality of n,
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the pair (m, z (m)) satisfies Theorem 1. Clearly z (m) ≡ 1mod 2
and therefore, property (2) of Theorem 1 is satisfied by the pair
(m, z (m)) . So 2m+2 is goldbachian, and recalling that m = n−1,
clearly 2n is goldbachian. Observation 1.1 follows.

Observation 1.2: If 2n−1 is not prime, then tn ·
P
t∈T (n) t >

pn.

Indeed, observing that pn−1 and pn are odd, that pn ≤ 2n− 1
(by Observation 1.1), and that 2n− 1 is not prime, clearly

pn = pn−1. (1.1)

Now suppose that the pair (m, z (m)) is such that m = n − 1
and z (m) = 0; since n ≥ 6 (by Observation 1.1), clearly m ≥ 5,
z (m) is a cache of m, and m < n. Then, by the minimality of n,
the pair (m, z (m)) satisfies Theorem 1. Clearly z (m) ≡ 0mod 2,
and therefore property (1) of Theorem 1 is satisfied by the pair
(m, z (m)) . So

tm ·
X

t∈T (m)
t > pm − z (m) . (1.2)

Recalling that z (m) = 0 and m = n − 1, and that pn = pn−1 (by
equation (1.1)), inequality (1.2) becomes:

tn−1 ·
X

t∈T (n−1)
t > pn. (1.3)

Clearly tn ·
P
t∈T (n) t ≥ tn−1 ·

P
t∈T (n−1) t, and inequality (1.3) im-

mediately implies that tn ·
P
t∈T (n) t > pn. Observation 1.2 follows.

Observation 1.3: Let (n, z (n)) be given, where (n, z (n)) is
the aforementioned counter-example of Theorem 1, with n least
and z (n, 2) least. Then z (n) ≡ 0mod2.

Otherwise,

z (n) ≡ 1mod 2, (1.4)

and we have the following claims.

Claim 1.1: tn ·
P
t∈T (n) t > pn.

To see this, consider (n, z (n)) and look at z (n, 2) . Since z (n) ≡
1mod 2 (by congruence (1.4)), clearly z (n, 2) = 1. Now let the pair
(n, f (n)) be such that f (n) = 0; observing that n ≥ 6 (by Ob-
servation 1.1), then f (n) is a cache of n with f (n, 2) = 0. Clearly
f (n, 2) < z (n, 2) (where z (n) and f (n) are two caches of n);
then, by the minimality of z (n, 2) , the pair (n, f (n)) satisfies The-
orem 1 (See Remark 1). Clearly f (n) ≡ 0mod 2 and therefore,
property (1) of Theorem 1 is satisfied by the pair (n, f (n)) . So
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tn ·
P
t∈T (n) t > pn−f (n) , and clearly tn ·

P
t∈T (n) t > pn, because

f (n) = 0. Thus, we have established Claim 1.1.

Claim 1.2: 2n+ 2 is goldbach.

Indeed, since Assertion A holds, then, using Claim 1.1, it im-
mediately follows that 2n+ 2 is goldbach. Claim 1.2 follows.

Claim 1.3: Property (2) of Theorem 1 is false.

This claim is immediate (Since z (n) ≡ 1mod 2 (by congruence
(1.4)), and since the pair (n, z (n)) is a counter-example of Theorem
1).

Claim 1.4: 2n+ 2 is not goldbachian.

Indeed, observing that property (2) of Theorem 1 is false (by
Claim 1.3), it follows that 2n + 2 is not goldbachian. Claim 1.4
follows.

These four claims having been made, observing that 2n+ 2 is
goldbach (by Claim 1.2), and since 2n is goldbachian (by Observa-
tion 1.1), clearly 2n+2 is goldbachian, and this contradicts Claim
1.4. Thus, Observation 1.3 follows.

These simple three observations having been made, let the pair
(n, z (n)) be the aforementioned minimal counter-example of The-
orem 1). We observe the following consequences, for the sake of
deriving a contradiction.

Consequence 1.1: Property (1) of Theorem 1 is false.

Indeed, this consequence is immediate, since z (n) ≡ 0mod 2
(by Observation 1.3), and since the pair (n, z (n)) is a counter-
example of the Theorem 1.

Consequence 1.2: tn ·
P
t∈T (n) t ≤ pn − z (n) .

This consequence follows immediately from Consequence 1.1.

Consequence 1.3: 2n− 1 is prime.
Otherwise, Observation 1.2 implies that tn ·

P
t∈T (n) t > pn,

and this contradicts Consequence 1.2, as z (n) ≥ 0.
Consequence 1.4: 2n+ 2 is goldbach.

Indeed, observing that 2n − 1 is prime (by Consequence 1.3),
clearly 2n+2 is goldbach (note that 2n+2 = 2n−1+3, where 3 and
2n − 1 are primes and n ≥ 6 (by Observation 1.1)). Consequence
1.4 follows.

These four consequences having been observed, recalling that
Assertion A holds, and since 2n + 2 is goldbach (by Consequence
1.4), it immediately follows that tn ·

P
t∈T (n) t > pn. This contra-

dicts Consequence 1.2, because z (n) ≥ 0. Thus, Theorem 1 follows.
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Corollary 1: Suppose that Assertion A holds. Then, for every
integer n ≥ 1, 2n+ 2 is goldbachian.

Proof. The proof is immediate if n ∈ {1, 2, 3, 4} . If n ≥ 5, let
the pair (n, z (n)) be such that z (n) = 1. The pair (n, z (n)) has
the property that 0 ≤ z (n) < n, where n ≥ 5, z (n) = 1mod 2, and
z (n) is a cache of n. Then property (2) of Theorem 1 is satisfied
by the pair (n, z (n)) . Therefore 2n+ 2 is goldbachian. ¤

Corollary 2: Suppose that Assertion A holds. Then, the Gold-
bach Conjecture holds.

Proof. Indeed, the Goldbach Conjecture is an immediate con-
sequence of Corollary 1. ¤

Corollary 3: Suppose that Assertion A holds. Then, for every
integer n ≥ 2, we have tn ·

P
t∈T (n) t > pn.

Proof. The proof is immediate if n ∈ {2, 3, 4} . If n ≥ 5, let
the pair (n, z (n)) be such that z (n) = 0. The pair (n, z (n)) has
the property that 0 ≤ z (n) < n, where n ≥ 5, z (n) = 0mod 2, and
z (n) is a cache of n. Then property (1) of Theorem 1 is satisfied
by the pair (n, z (n)) . Therefore tn ·

P
t∈T (n) t > pn − z (n) , and

clearly tn ·
P
t∈T (n) t > pn (because z (n) = 0). ¤

Corollary 4: Suppose that Assertion A holds. Then, the Twin
Prime Conjecture holds.

Proof. Indeed, the Twin Prime Conjecture is an immediate
consequence of Corollary 3. ¤

Corollary 5: Suppose that Assertion A holds. Then, for every
integer n ≥ 5, tn ·

P
t∈T (n) t > n.

Proof. Observing that there exists a prime between n and 2n
(for every integer n ≥ 1), then, using definition of pn and Corollary
3, we immediately deduce that pn ≥ n; so. tn ·

P
t∈T (n) t > n. ¤

Using Corollary 2 and Corollary 5. the following result becomes
immediate.

Theorem R: Suppose that Assertion A holds. Then the Goldbach
Conjecture and the Twin Prime Conjecture simultaneously hold.

Proof. Corollary 2 says that the Goldbach Conjecture holds,
and Corollary 5 is stronger than the Twin Prime Conjecture. ¤
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Conjecture 1: Assertion (A) holds. (Note that Conjecture 1 si-
multaneously implies the Goldbach Conjecture and the Twin Prime
Conjecture, via Theorem R.)

Conclusion

It is natural to conjecture that the Twin Prime Conjecture
can be seen as an obvious special case of the Goldbach Conjecture.
Indeed, let A* be the following assertion:

Assertion A*: For every integer m ≥ 2, the following two prop-
erties, w(A*,m) and o(A*,m), are such that o(A*,m) ⇒ w(A*,m).

w(A*.m): 2m+ 2 is goldbach.

o(A*.m): tm ·
P
t∈T (m) t > pm

Observe that Assertion A* is somewhat similar to Assertion
A, which is stronger than the Goldbach Conjecture and the Twin
Prime Conjecture, via Theorem R. More precisely, Assertion A
clearly implies Assertion A*.

Conjecture 2: Assertion A and Assertion A* are equivalent.

Note that Conjecture 2 implies that the Twin Prime Conjecture
is a special case of the Goldbach Conjecture.

Proof. Suppose that Conjecture 2 holds. If the Goldbach
Conjecture holds, then clearly Assertion A* holds; so Assertion A
holds (because Assertion A* and Assertion A are equivalent by hy-
pothesis), and Theorem R implies that the Twin Prime Conjecture
holds. ¤

Conjecture 3: Suppose that Assertion A* holds. Then, the Gold-
bach Conjecture and the Twin Prime Conjecture simultaneously
hold.

Note that Conjecture 3 immediately implies that the Twin
Prime Conjecture is a special case of the Goldbach Conjecture.

Proof. Suppose that Conjecture 3 holds. If the Goldbach
Conjecture holds, then clearly Assertion A* holds, and as a conse-
quence, the Twin Prime Conjecture holds. ¤

Now. using Theorem R, Assertion A, the previous two conjec-
tures, and observing that there is not a great difference between
Assertion A and A*, it becomes natural to conjecture that:
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Conjecture 4: The Twin Prime Conjecture is only an obvious
special case of the Goldbach conjecture.
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