Problems

(1) Determine a function $F(n)$ such that $F(1)=10$, and $F(n)=4 F\left(\frac{n}{2}\right)+3 n^{2}$ for $n \geq 2$. If it helps, you may assume that n is a power of 2 .
(2) Develop a formula for the maximum number of regions that can be formed by using N circles to partition the plane. Also, what implications does this have for Venn diagrams?
(3) Let M_{n} denote the $n \times n$ matrix such that each element $m_{i j}=1$ when $|i-j| \leq 1$, and otherwise $m_{i j}=0$. Compute the determinant of matrix M_{n} for all $n \geq 1$.
(4) Determine whether each of these three statements is True or False.
(a) The number of True statements in this list is even.
(b) The number of False statements in this list is odd.
(c) If statement 4 a is True then statement 4 b is True.
(5) On the following page are four toothpicks and an olive. (The toothpicks are arranged in the shape of a cocktail glass.) Move two toothpicks so that the olive will appear to be outside the glass, but so that the glass retains the same shape.

(6) Consider A, the $n \times n$ matrix with 2 's on the main diagonal, 1 's on the neighboring diagonals, and 0's everywhere else. (The matrix is shown below.) Prove that for all natural numbers n, the eigenvalues of A are given by $\lambda_{i}=2+2 \cos \left(\frac{i \pi}{n+1}\right)$ for $i=1,2, \ldots, n$.

$$
\left[\begin{array}{cccccc}
2 & 1 & 0 & & \cdots & 0 \\
1 & 2 & 1 & 0 & \cdots & \\
0 & 1 & 2 & 1 & \ddots & \\
& 0 & 1 & \ddots & \ddots & 0 \\
0 \\
\vdots & \vdots & 0 & \ddots & 2 & 1
\end{array}\right) 00
$$

Solutions, comments, and discussions should be sent to:

Ken Roblee	Vicky Eichelberg
Department of Math \& Physics	Saint James School
232 MSCX	6010 Vaughn Road
Troy State University	Montgomery, AL 36116
Troy, AL 36082	(334)277-8033
(334)670-3406	FAX (334)277-8059
FAX (334)670-3796	eichelberg2@charter.net

