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Abstract

For students in an introductory statistics course, the proba-
bilistic ideas involving sampling variation are difficult to under-
stand. This paper describes the use of technology for teaching the
ideas behind the Central Limit Theorem (CLT) to students in a
non-calculus based, introductory statistics course.

What Do We Want Students to Know About the CLT?

Increasingly, computers and graphing calculators are being used
in introductory statistics courses. However, such use of technology
has been mostly limited to mastering the data analysis technique.
The problem faced by teachers of introductory courses is that Sta-
tistics is not an intuitive subject. Many statistical concepts are
probabilistic and many students have math barriers.

One possible solution to this problem is visualization of con-
cepts. Concepts presented visually are more concrete. Advances in
technology have made it possible to present statistical ideas visu-
ally, and make concepts concrete by allowing students to conduct
statistical experiments.

The CLT is one of the concepts taught in introductory statistics
courses. Typically, the introduction of the concept of sampling
distribution leads, naturally, to the concept of CLT. Consider the
following statement of the CLT given by Serfling (2001), a leading
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book on the approximation theorems:

Let Xi be I.I.D. with mean µ and finite variance σ2.
Then, as n→∞,
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Clearly, this definition is couched in the concepts and symbols
of calculus. No doubt, students will find such a definition intimi-
dating. Since Serfling (2001) is not among the textbooks used for
introductory, non-calculus-based courses, let us consider one of the
more popular textbooks from that category. The statement of the
CLT found in Yates, et al (2003), is wordier but involves fewer
notations. It is given below:

Draw a SRS of size n from any population whatso-
ever with mean µ and finite standard deviation σ.
When n is large, the sampling distribution of the
sample mean x̄ is close to the normal distribution,
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Here, “SRS” refers to the simple random sample. In spite of
the simplified statement format, the result of this theorem makes
an intuitive appeal to the notion of limit from calculus, and teach-
ers are faced with the difficult task of explaining it to students
who have no calculus background. As a result, students have diffi-
culty understanding the meaning and usefulness of this important
theorem. What is it that we expect students to know about this
theorem? Do we want them to memorize the statement of the
theorem and reproduce it? No. We want them to understand the
underlying ideas and apply them to problems in real life situations.
The CLT is a complex mixture of several concepts. In traditional
textbooks it is covered somewhere around chapter 6 or 7. Several
concepts introduced in earlier chapters, such as the following, come
together in the CLT.

(1) Population versus sample,
(2) Population mean versus sample mean,
(3) Random sampling,
(4) Variability or variation,
(5) A pattern (distribution) of all possible values that we

could possibly observe for the sample mean,
(6) A population distribution versus sampling distribution,
(7) Effect of sample size on the variability of sample means,
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(8) Diminishing difference between the actual sampling dis-
tribution and the limiting normal distribution,

(9) Distribution in limit.

Do we realistically expect students without any background in
calculus to understand the concepts of convergence of distribution?
Certainly not. This being the case, we must decide what we DO
expect them to understand after studying the CLT. As described
by Newton and Harvill (1997), the basic objectives behind teaching
the CLT are to make students aware of the following:

• The shape of the distribution of many sample means, each
calculated from a different, randomly selected sample, is
an approximately normal (or bell-shaped) curve.

• The mean of the sampling distribution of the sample mean
is the mean of the parent distribution (the mean of the
means is the mean).

• As the sample size gets larger, the sampling distribution
of the sample mean becomes more symmetric.

• As the sample size gets larger, the sampling distribution
of the sample means becomes narrower.

• For more skewed parent distributions, larger sample sizes
are needed in order for the sampling distribution to be-
come approximately normal.

• There is no such magic number as 25, 30, 50, or 100, as
suggested by so many textbooks, above which the approx-
imation is adequate.

How Do We Demonstrate the CLT?

Simulation along with dynamic graphics can be used to pro-
duce moving visualizations of concepts that are difficult to under-
stand without proper mathematical background. Highly interac-
tive graphic displays of simulation results, used in classroom in-
struction, as well as carefully designed lab experiments, can help
students understand the concepts.

There are several software packages available on the market
(some of which are share-ware) from which instructors can choose
suitable software, based on such considerations as the availability
of equipment and transportability. For example:

• StataQuest (Duxbury)
• ActiveStats (Addision-Wesley)
• Visual Statistics (McGraw-Hill Irwin)
• CyberStates (Duxbury)
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There are also several web-based applets that can be used to
demonstrate the CLT, many of which can be found at the following
web addresses:

• www.stat.vt.edu/~sunder/java/applets/CLT2Applet.htm
• www.ruf.rice.edu/~lane/stat_sim/index.html
• www.stat.sc.edu/~west/javahtml/clt.html
• www.math.csusb.edu/faculty/stanton/probstat/clt.html
• web.uvic.ca/~esfchan/stats/
• www.uses.ece.gatech.edu/users/gtz/java/clt/

Often, students fail to understand the process behind these
applets and feel like numbers are being pulled out of a black box.
It is important that they understand the sampling process. How-
ever, actually sampling from the population by hand is very time
consuming and quickly becomes a repetitive and boring process.
Therefore, simulation of the sampling process using a computer
program or a scientific calculator is a fitting solution. This paper
will demonstrate the use of Minitab to illustrate the essential ideas
of the Central Limit Theorem, as described above.

Using Minitab to Illustrate the CLT:

• Cal→Random data gives a list of several distributions.
Select a distribution. Start with a symmetric distribution
like a normal distribution (with any mean and standard
deviation) or a binomial distribution with p = 0.5. Select
100 samples (i.e. 100 rows of data), each of size n = 5 (i.e.
save in 5 selected columns, say, C1-C5). Fig. 1 shows how
to generate random samples from a symmetric binomial
distribution using Minitab. This will result in a table of
data consisting of 100 rows and 5 columns. Each row
constitutes a sample.

• Compute the mean of each sample using Cal → Row
statistics and save it in another column (say, C6). Fig.
2 shows how to calculate sample means using the row
statistics option in Minitab. This will result in 100 sample
means.

• Make a dotplot or a histogram to get the sampling distri-
bution of X̄.

• Compute numerical summary statistics.
• Describe the sampling distribution in terms of the center,
spread, and shape of the distribution.

• Repeat the process using n = 10, 20, 25, 30.
• Describe the effect of sample size on the sampling distri-
butions in terms of the center, spread, and shape of the
distribution.
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• Then repeat the process with more skewed distributions
like a binomial distribution with p close to 0 or 1, an
exponential distribution, or a chi-square distribution.

Figure 1: Generating random samples from a binomial
distribution

Figure 2: Calculating sample means and saving in a different
column

Example 1. Here we describe the results of one such simula-
tion. Suppose we selected 200 samples, each of size n = 30, from
an exponential distribution with mean 10. The probabilistic model
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for this population is given by:

f (x) =

⎧⎨⎩
1
10e
− x
10 x > 0

0 elsewhere.

It is described in Fig. 3. Students in an introductory course are
not likely to draw much insight from the formula, but can certainly
see from the graph (Fig. 3) that the exponential distribution is far
from symmetric.

Figure 3: Exponential distribution with mean 10

For this model, the mean is µ = 10 and the variance is σ2 =
(10)2 (i.e. the standard deviation is σ = 10). The sample mean x̄
was calculated for each of the 200 samples.

• The average of the 200 sample means turned out to be
9.932, which is reasonably close to the population mean
10.

• The standard deviation for the 200 values of x̄ was calcu-
lated and found to be 1.832. Theoretically, the standard
deviation of X̄ is σx̄ = σ√

30
= 10√

30
= 1.825, which is not

far from the observed value of 1.832.
• A relative frequency histogram for the 200 values of x̄
is shown in Figure 4. It looks mound-shaped and fairly
symmetric (with a couple of outliers on the higher end),
although we sampled from a very skewed distribution.
The normal distribution superimposed on the histogram
(Fig. 4) shows that the sampling distribution is closely
approximated by the normal distribution.
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Figure 4: Frequency histogram for sample mean (n = 30)

To see what happens to the sampling distribution of x̄ for
smaller sample sizes, let us take 200 samples of sizes 5 and 10.
The sampling distributions of x̄ from one such simulation of 200
samples of sizes 5, 10, and 30 are shown in Fig. 5 below.

Fibure 5a: boxplots
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Figure 5b: dotplots

Figure 5: Sampling distributios of x̄ for n = 5, 10, and 30

Comparison of three sampling distributions shows that the be-
havior of the sampling distribution differs for different sample sizes.
However, we would like our students to notice a trend in this be-
havior. Although the population distribution is skewed,

• The mean of the sampling distribution remains close to
10 (the population mean), regardless of the sample size.

• The spread (width) of the sampling distribution is re-
duced as the sample size is increased.

• The shape of the sampling distribution becomes more
symmetric and mound-shaped as the sample size is in-
creased.

The summary statistic from these simulations is reported in
Table 1. It supports the conclusions drawn from the graphs of the
sampling distributions.

• The average of 200 sample means stays right around 10,
the population mean. It does not change with the sample
size.

• The standard deviation decreases as the sample size is in-
creased. It can be easily seen that the standard deviation
is very close to σx̄ = σ√

n
= 10√

n
.

• The shape of the distribution is not easy to determine
from the numerical summary. However, a comparison of
mean & median, as well as mean and Q1and Q3, indicate
symmetry of the distribution for larger sample sizes.
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Variable N Mean Median Tr Mean St Dev SE Mean

mean (n = 5) 200 10.152 9.870 10.014 4.147 0.293
mean (n = 10) 200 10.151 10.053 10.016 2.979 0.211
mean (n = 30) 200 9.932 9.876 9.890 1.832 0.130

Variable N Min. Max. Q1 Q3

mean (n = 5) 200 1.830 22.685 6.909 12.760
mean (n = 10) 200 3.353 19.982 8.000 12.130
mean (n = 30) 200 5.444 16.307 8.666 11.098

Table 1: Summary statistic of sample means from an exponential
population

We can continue this process with different distributions to
show students the meaning of the CLT. Also, we can continue sam-
pling with n = 30, 40, 50, and show how the sampling distribution
gets closer to the normal distribution. Although many perceive a
sample size of 30 as a magic number for applying the CLT, we can
use these simulations to show that there is no magic number for
which the CLT holds under all circumstances. For skewed distri-
butions, multimodal distributions, and distributions with outliers,
sample sizes larger than n = 30 are probably needed to see the
results of the CLT.

-20 -10 0 10 20

Figure 6: Asymmetric population distribution

Example 2. Consider the population described by the distrib-
ution in Fig. 6. Clearly, the distribution is left-skewed and possibly
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bimodal. The mean and the standard deviation, respectively, for
this population are µ = 6.96 and σ = 8.08. Let us take samples
from this population and see how the sample means behave.

Fig. 7a and 7b, respectively, show the sampling distributions
of means for samples of sizes n = 30 and n = 40. from this popu-
lation. It is obvious that even at sample size n = 30, the sampling
distribution has not attained the symmetric unimodal nature of the
normal distribution. The sampling distribution is still somewhat
skewed. The sampling distribution for n = 40 is more compact,
or less spread, as expected. It is still a little bit left-skewed, but
slightly more symmetric than that for n = 30.

2 3 4 5 6 7 8 9 10

Figure 7a: n = 30

4 5 6 7 8 9 10

Figure 7b: n = 40

Figure 7: Sampling distribution of the mean for samples from the
distribution in Fig. 6

On the other hand, if we are sampling from a fairly symmetric
and mound-shaped distribution, the result of the CLT holds even
for small samples.

Example 3. Let us consider a symmetric population of a
binomial experiment with 50 trials and the probability of success
0.5 (n = 50 and p = 0.5), as displayed in Fig. 8. Take 200 random



Spring/Fall 2006 35

samples of size 5 from this population. The distribution of means
of samples of size 5 from this symmetric binomial is displayed in
Fig. 9. It shows that the distribution of sample means is symmetric
and mound-shaped (very close to the normal distribution), even for
samples of size 5.

Figure 8: Binomial distribution with n = 50 and p = 0.5

20 21 22 23 24 25 26 27 28 29 30

Figure 9: Distribution of means of samples from a symmetric
binomial population (n = 5)
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