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Abstract
In this paper we present a unified method for solving general

polynomial equations of degree less than five.

1. Introduction
Is there some common or unified approach for solving general

polynomial equations of degree four or less instead of solving them
by different methods? The answer is ‘yes.’ This paper presents
a novel method of decomposing the general polynomial equations
(of degree four or less) into two constituent lower-degree polynomi-
als as factors, eventually leading to solution. The author uses this
method to solve the general quadratic, cubic, and quartic equa-
tions. For polynomial equations of degree five and higher (since
no general solution is possible in radicals, as shown by Abel and
Galois), the method can be used to solve many types of solvable
equations [1]. However, since the scope of this paper is limited to
general polynomial equations of degree four or less, the solution
of polynomial equations of degree five and greater is not discussed
here. The following sections contain a brief historical account on
polynomial equations, a description of the unified method, and the
application of this method to solve quadratics, cubics, and quartics.

2. A Brief Historical Account
The quest to solve polynomial equations is not new, and we

notice from history that, even before 2000 BC, Greeks, Hindus,
and Babylonians knew the solution to quadratics in one form or
another. However, the solution of cubics eluded mathematicians

[1]
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for more than three thousand years after the quadratic was solved.
In the 11th century, Omer Khayyam solved the cubic geometrically,
by intersecting parabolas and circles, and it was Scipione del Ferro,
who found the solution to the cubic in 1515, but did not bother
to publish it. In 1535, Tartaglia obtained formulas to solve cer-
tain types of cubic equations, while Cardano (in 1539) published
his solution to the general cubic in his book, The Great Art (or
The Rules of Algebra), using complex numbers, at a time when
the use of complex numbers was considered to be absurd. At the
same time, Cardano’s friend Ferrari published the solution to the
general quartic equation. This period witnessed lot of disputes
among Scipione del Ferro, Tartaglia, Cardano, and Ferrari, regard-
ing credit for the general solution of the cubic. Several efforts by
eminent mathematicians to solve the general quintic on similar lines
as adopted for cubics and quartics ended up in failure. In 1770,
Lagrange showed that polynomials of degree five or more couldn’t
be solved by these methods. The same idea, in a more general
form, was given by Ruffini in 1799 in his book, General Theory of
Equations [2, 3]. Further work on the polynomials of degree five
and higher was reported by Abel and Galois. In 1826, Abel pub-
lished the proof of the impossibility of generally solving algebraic
equations of a degree higher than four by radicals; while Galois
(1832), whose work constituted the foundation of group theory,
used this theory to show the same impossibility [3, 4]. This does
not mean that there is no algebraic solution to general polynomial
equations of degree five and higher. A key contribution towards the
algebraic solution of the general quintic came from Bring in 1786,
who showed that every quintic can be transformed into a principal
quintic of the form: x5 + ax + b = 0. Algebraic solutions to the
general quintic and sextic equations have been obtained using the
symbolic coefficients [5, 6].

Coming back to general polynomial equations of degree less
than five, we observe that the cubic equation is solved by the well-
known Cardano’s method, while the quartic equation is solved us-
ing Ferrari’s method. However, these two methods adopt totally
different approaches [2]. Underwood describes a method simpler
than Cardano’s method for solving the general cubic equation with
real coefficients, wherein the cubic polynomial is factored into three
factors, and all three roots are computed with comparatively less
complexity [7]. There are alternative methods to Ferrari’s method
to solve the quartic equation [8]. However we notice that there is
no common approach among the methods used for solving cubics
and quartics.

The aim of this paper is to present a unified method, which
can be adopted to solve quadratics, cubics, and quartics. The
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proposed method consists of decomposing the given polynomial
equation into two constituent lower-degree polynomials, in a novel
fashion as explained below.

3. The Unified Method

Let the general polynomial equation of degree, N, for which
solution is sought, be expressed as

(1) xN + aN−1xN−1 + . . .+ ajxj + . . .+ a1x+ a0 = 0,

where aj (j = 0 to (N − 1)) are real coefficients in the polynomial
equation (1) and N is less than five. Our aim is to decompose equa-
tion (1) into two factors by means of a common or unified method,
irrespective of the degree of equation (1). In order to achieve this
objective, the polynomial equation (1) has to be converted into
another polynomial equation of the same degree, which is in a con-
venient form to decompose. For this purpose let us construct a
polynomial equation of N th degree as follows:

(2)
[VM (x)]

K − pK [WM (x)]
K

1− pK = 0,

where VM (x) andWM (x) are constituent polynomials of degreeM,
whereM < N, and p is an unknown to be determined. The integer
K has to satisfy the relation

(3) KM = N,

so that polynomial equation (2) is of degree N. Also, notice that
the integer K must always be greater than unity to facilitate de-
composition of equation (2). The polynomials VM (x) and WM (x)
are given by

VM (x) = x
M + bM−1xM−1 + . . .+ bjxj + . . .+ b1x+ b0

(4) WM (x) = x
M + cM−1xM−1 + . . .+ cjxj + . . .+ c1x+ c0,

where bj and cj (j = 0 to (M − 1)) are coefficients in the polyno-
mials, VM (x) and WM (x), respectively. These coefficients (bj and
cj) are unknowns to be determined. Notice that the constructed
polynomial equation (2) can be easily decomposed into two factors,
and one of the factors is given by

(5) YM (x) =
VM (x)− pWM (x)

1− p .
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Thus if we are able to represent our given polynomial equation (1)
in the form of (2), then we can decompose (1) into two factors, and
one of the two factors is given by (5). For the polynomial equation
(1) to be represented as (2), the corresponding N coefficients in
equations (1) and (2) are to be equal. However, notice that the
coefficients in equation (2) are not expressed explicitly. Therefore,
to bring out the coefficients explicitly, equation (2) is expanded
and rearranged in descending powers of x (in the same manner
that equation (1) is written), as shown below:

(6) xN + dN−1xN−1 + . . .+ djxj + . . .+ d1x+ d0 = 0,

where dj (j = 0 to (N − 1)) are coefficients obtained after the
expansion and rearrangement of equation (2), and are functions of
unknowns, bj , cj , and p. Now we are in a position to equate the
corresponding coefficients, of the given polynomial equation (1) and
the constructed polynomial equation, expressed in the form of (6).
This process results in N equations in (2M + 1) unknowns, namely
b0, b1, . . . , bM−1, c0, c1, . . . , cM−1, and p, as shown below:

(7) dj = aj ,

where j = 0 to (N − 1).
If the number of unknowns, (2M + 1), is less than the number

of equations, N, then some of the coefficients of the given poly-
nomial equation (1) get related to each other, leading to a solu-
tion which is not the general solution. To ensure that the pro-
posed method yields the general solution, the number of unknowns
(2M + 1) has to be equal to the number of equations N when N
is odd, and equal to N + 1 when N is even, as shown below1:

2M + 1 = N, for N odd

(8) 2M + 1 = N + 1, for N even.

The integer M is determined first using (8), and then K is deter-
mined from (3) using the values of N and M. Observe that when
N is even, the number of unknowns is one more than the num-
ber of equations. In such case, the extra (one) unknown has to be
assigned some convenient value, so that all the unknowns can be
determined by solving the N equations given in (7).

1The reader will note that having at least as many unknowns as equations
is a necessary (but certainly not sufficient) condition for the solution of the
general Nth degree polynomial equation. For example, for N = 6 one computes
M = 3 and K = 2, and so 2M + 1 ≥ 6, and yet there exist non-solvable
polynomials of degree 6.
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With determination of all unknowns, we are in a position to
represent the given polynomial equation (1) as a constructed poly-
nomial equation written in the form of (2). Hence the given poly-
nomial equation can be decomposed into two factors, with one of
the factors being YM (x) as shown in (5). This factor, YM (x) ,
when equated to zero results in a polynomial equation of degreeM
as shown below:

(9) xM + . . .+
bj − pcj
1− p xj + . . .+

b1 − pc1
1− p x+

b0 − pc0
1− p = 0.

Solving the M th degree polynomial equation above, we obtain M
roots of the given polynomial equation (1). In the same manner,
the remaining factor of (2) is equated to zero to obtain a polynomial
equation of degree (N −M) . By solving this polynomial equation,
we obtain the remaining (N −M) roots. Thus all the N roots
are determined by factorization of the given polynomial equation
into N linear factors, which means that the given polynomial is
evaluated over the complex field, C.We now demonstrate that this
method can be used to solve quadratic, cubic, as well as quartic
equations, which are of general nature.

4. The Quadratic Equation

We shall now apply the proposed unified method to obtain the
roots of the quadratic equation. Let the quadratic equation for
which solution is sought be

(10) x2 + a1x+ a0 = 0,

where a0 and a1 are real, independent, and non-zero coefficients.
(When a0 or a1 are zero, the quadratic can readily be factored,
and therefore there is no need to proceed further with the pro-
posed method). Applying the unified method to the above qua-
dratic equation (N = 2) , we obtain the values of M and K from
expressions (8) and (3) respectively as M = 1, and K = 2. The
constructed quadratic equation, as shown in (2), is then given by

(11)
[V1 (x)]

2 − p2 [W1 (x)]
2

1− p2 = 0,

where V1 (x) and W1 (x) are expressed below (using (4)):

V1 (x) = x+ b0

(12) W1 (x) = x+ c0,
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and b0 and c0 are unknown coefficients in polynomials, V1 (x) and
W1 (x) , respectively. Substituting the expressions for V1 (x) and
W1 (x) (as given in (12)) into equation (11), we obtain the con-
structed quadratic equation in the following form:

(13)
(x+ b0)

2 − p2 (x+ c0)2
1− p2 = 0.

The equation above (13) is expanded and rearranged in descending
powers of x as shown below:

(14) x2 +
2
¡
b0 − c0p2

¢
1− p2 x+

b20 − c20p2
1− p2 = 0.

Equating the coefficients of the given quadratic equation (10) with
that of the constructed quadratic equation (14), yields the following
two equations:

(15)
2
¡
b0 − c0p2

¢
1− p2 = a1

(16)
b20 − c20p2
1− p2 = a0.

Notice that there are three unknowns (b0, c0, and p) to be deter-
mined, while there are only two equations ((15) and (16)) to solve.
Therefore one unknown has to be assigned some convenient value.
Let us make c0 = 0, and solve equations, (15) and (16), to evaluate
b0 and p in terms of a0 and a1. The values of b0 and p obtained are
given below:

b0 =
2a0
a1

(17) p =

¡
a21 − 4a0

¢ 1
2

a1
.

Having determined b0 and p, the given quadratic equation (10) can
be represented as the constructed quadratic equation (13), and
hence it can be split into two factors as shown below (noting that
c0 = 0):

(18)
x+ b0 − px
1− p · x+ b0 + px

1 + p
= 0.

Setting each one of the factors equal to zero in the equation above,
we obtain following two linear equations in x as given below:
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x+
b0
1− p = 0

x+
b0
1 + p

= 0.

Substituting the values of b0 and p (from (17)) into the two linear
equations above and rationalizing the denominators, the two roots,
x1 and x2, of the given quadratic equation (10) are obtained as

x1 =
−a1 −

¡
a21 − 4a0

¢ 1
2

2

(19) x2 =
−a1 +

¡
a21 − 4a0

¢ 1
2

2
,

which are well-known expressions for the roots of the general qua-
dratic equation. We shall now proceed to solve the cubic equation
using the same method.

5. The Cubic Equation

Consider the following cubic equation in x, for which solution
through the proposed unified method is sought:

(20) x3 + a2x
2 + a1x+ a0 = 0,

where a0, a1, and a2 are real and independent coefficients. (With-
out loss of generality, we assume that a2 6= 0. If a2 = 0, then
replacing x in (20) with x + r, r 6= 0, will yield a cubic whose a2
term is non-zero, and whose splitting field is identical to the split-
ting field of (20).) We note that for the case of the cubic equation,
N = 3, and the integersM andK are determined using expressions
(8) and (3) respectively as: M = 1, and, K = 3. The constructed
cubic equation as expressed in (2) is given by

(21)
[V1 (x)]

3 − p3 [W1 (x)]
3

1− p3 = 0,

where the polynomials V1 (x) and W1 (x) , are given by

V1 (x) = x+ b0

(22) W1 (x) = x+ c0,
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where b0, c0, and p are unknowns to be determined. Using equa-
tions (21) and (22), the constructed cubic equation is further ex-
pressed as

(23)
(x+ b0)

3 − p3 (x+ c0)3
(1− p3) = 0.

The equation above is expanded and rearranged in descending pow-
ers of x, as shown below:

(24) x3 +
3
¡
b0 − c0p3

¢
1− p3 x2 +

3
¡
b20 − c20p3

¢
1− p3 x+

¡
b30 − c30p3

¢
1− p3 = 0.

As described in the unified method, the given cubic equation (20)
has to be represented in the form of constructed cubic equation
(23) to enable us to decompose equation (20). To accomplish this,
we equate the corresponding coefficients in equations, (20) and (24)
(since (24) is the expanded form of (23)), resulting in the following
three equations in three unknowns (b0, c0, and p) as shown:

(25)
3
¡
b0 − c0p3

¢
1− p3 = a2

(26)
3
¡
b20 − c20p3

¢
1− p3 = a1

(27)
b30 − c30p3
1− p3 = a0.

To determine the unknowns we proceed as follows. Equations (26)
and (27) are divided by equation (25) to get the following expres-
sions:

(28)
b20 − c20p3
b0 − c0p3 =

a1
a2

(29)
b30 − c30p3
b0 − c0p3 =

3a0
a2
.

Equation (25) is rearranged to obtain an expression for p3 as shown:

(30) p3 =
a2 − 3b0
a2 − 3c0 .

Using (30) we eliminate p3 from equation (28), and after some
algebraic manipulations we get following expression in b0 and c0:



Spring/Fall 2006 9

(31) (b0 − c0) [a1 + 3b0c0 − a2 (b0 + c0)] = 0.
The expression above contains two factors.When the factor (b0−c0)
is equated to zero, b0 equals c0, and this condition transforms the
cubic equation (23) into the cube of a linear polynomial as follows:

(x+ c0)
3 = 0.

When the cubic above is equated with the given cubic (20), the
coefficients, a0, a1, and a2, become interdependent, and we end up
with a special case of cubic equation, which is the cube of a linear
polynomial. But since we are seeking the solution of the general
cubic equation, b0 need not be equal to c0 in general. Hence, we
have to consider the other factor in (31); and after equating this
factor to zero, we get the following relation between b0 and c0 as
shown:

(32) a1 + 3b0c0 − a2 (b0 + c0) = 0.
We now eliminate p3 from equation (29), using equation (30), and
after some algebraic manipulations, we get the following expression,
where again the term (b0 − c0) emerges as a factor:

(33) (b0 − c0)
£
3a0 + 3b0c0 (b0 + c0)− a2

¡
b20 + b0c0 + c

2
0

¢¤
= 0.

As in the earlier case, we consider the factor other than (b0 − c0) in
the expression (33), and equate it to zero, and after some manipu-
lations, we obtain following relation between b0 and c0 as shown:

(34) 3a0 + a2b0c0 + 3b0c0 (b0 + c0)− a2 (b0 + c0)2 = 0.
It is interesting to see that the unknowns, b0 and c0, appear to-
gether as sum and product terms in equations (32) and (34),
prompting us to define f1 and f2 as follows:

(35) f1 = b0 + c0

(36) f2 = b0c0.

Re-expressing equations (32) and (34) in terms of f1 and f2, we
have

(37) a1 + 3f2 − a2f1 = 0
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(38) 3a0 + a2f2 + 3f1f2 − a2f21 = 0.
By solving equations (37) and (38), f1 and f2 are determined as
shown below:

(39) f1 =
a1a2 − 9a0
a22 − 3a1

(40) f2 =
a21 − 3a0a2
a22 − 3a1

.

In case the term
¡
a22 − 3a1

¢
, which is in the denominator in (39)

and (40), is zero, then the given cubic equation (20) is reduced to
the special case as shown below:³

x+
a2
3

´3
= (

a2
3
)3 − a0,

whose solution can be readily found. Notice from equations, (39)
and (40), that the sum f1 and product f2 of b0 and c0 are deter-
mined. Therefore, we recognize that b0 and c0 are the roots of the
quadratic equation

y2 − f1y + f2 = 0.
Thus b0 and c0 are determined as

(41) b0 =
f1 +

¡
f21 − 4f2

¢ 1
2

2

(42) c0 =
f1 −

¡
f21 − 4f2

¢ 1
2

2
.

The only remaining unknown, p, is determined from (30) as shown
below:

(43) p =

⎡⎣2a2 − 3f1 − 3 ¡f21 − 4f2¢ 12
2a2 − 3f1 + 3 (f21 − 4f2)

1
2

⎤⎦ 1
3

.

Notice that the constructed cubic equation (23) can be factored as
shown below:

(44)
(x+b0)−p (x+c0)

1− p · (x+b0)
2+p (x+b0) (x+c0)+p

2 (x+c0)
2

1 + p+ p2
= 0.
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Since we are able to represent the given cubic equation (20) in the
form of (23) by determining all the unknowns, it is clear that we
have successfully decomposed (20) as shown in (44). Equating each
of the factors in (44) to zero, we get two equations as shown below:

(45) (x+ b0)− p (x+ c0) = 0

(46) (x+ b0)
2 + p (x+ b0) (x+ c0) + p

2 (x+ c0)
2 = 0.

Equation (45) is a linear equation in x, from which we get one
root of the given cubic equation; while equation (46) is a quadratic
equation, which provides the other two roots. Thus, solving (45),
one root x1 of the given cubic equation is obtained as

(47) x1 =
pc0 − b0
1− p .

The remaining two roots, x2 and x3, of the given cubic are obtained
when the quadratic equation (46) is solved. The roots are given by

(48)

x2 =
−(2b0+2p2c0+pf1)

2+2p+2p2

+

h
(2b0+2p2c0+pf1)

2−4(1+p+p2)(b20+p2c20+pf2)
i 1
2

2+2p+2p2

(49)

x3 =
−(2b0+2p2c0+pf1)

2+2p+2p2

−
h
(2b0+2p2c0+pf1)

2−4(1+p+p2)(b20+p2c20+pf2)
i 1
2

2+2p+2p2

.

We have determined all three roots of the general cubic equation
using the unified method. In the last section of the paper a numer-
ical example of a cubic equation is solved, confirming the validity
of the formulas obtained for the roots of the cubic equation.

6. The Quartic Equation

Consider the following fourth-degree polynomial equation in x
as given below:

(50) x4 + a3x
3 + a2x

2 + a1x+ a0 = 0,

where a0, a1, a2, and a3 are real and independent coefficients. To
decompose the quartic equation above, using the proposed unified
method, we begin by determining the integers M and K using
equations (8) and (3), respectively, as M = 2 and K = 2. The next
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step is to construct a quartic equation in the form shown in (2),
for the case of N = 4, M = 2, and K = 2, as indicated below:

(51)
[V2 (x)]

2 − p2 [W2 (x)]
2

1− p2 = 0,

where the constituent polynomials, V2 (x) and W2 (x) , are given
by:

V2 (x) = x
2 + b1x+ b0

(52) W2 (x) = x
2 + c1x+ c0,

where b0, b1 and c0, c1 are the coefficients of polynomials, V2 (x)
and W2 (x) , respectively. Substituting the expressions for V2 (x)
andW2 (x) from (52) into equation (51), we obtain the constructed
quartic equation as shown below:

(53)

¡
x2 + b1x+ b0

¢2 − p2 ¡x2 + c1x+ c0¢2
1− p2 = 0.

Expanding and rearranging equation (53) in descending powers of
x yields the equation below:.

(54)

x4 +
2(b1−c1p2)

1−p2 x3 +
b21+2b0−(c21+2c0)p2

1−p2 x2 +
2(b0b1−c0c1p2)

1−p2 x

+
b20−c20p2
1−p2 = 0.

Equating the corresponding coefficients of the given quartic equa-
tion (50) and the constructed quartic equation (54) results in the
four equations given below:

(55)
2
¡
b1 − c1p2

¢
1− p2 = a3

(56)
b21 + 2b0 −

¡
c21 + 2c0

¢
p2

1− p2 = a2

(57)
2
¡
b0b1 − c0c1p2

¢
1− p2 = a1

(58)
b20 − c20p2
1− p2 = a0.
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Since there are five unknowns (b0, b1, c0, c1, and p) but only four
equations to solve, we assign some convenient value to one un-
known, so that all the unknowns can be determined. Let us make
c1 = 0, and use it in equations that contain c1. As a result, the
equations, (55), (56), and (57), are modified as shown below:

(59)
2b1
1− p2 = a3

(60)
b21 + 2b0 − 2c0p2

1− p2 = a2

(61)
2b0b1
1− p2 = a1.

(Without loss of generality, we assume that a3 6= 0. Otherwise,
b1 = 0, and consequently, a1 = 0. In this case, (50) is a quadratic
in x2, and can be solved as in section 4.) Now we start the process
of determining the four unknowns, b0, b1, c0, and p, using the four
equations, (58), (59), (60), and (61). Dividing the equations, (61),
(58), and (60), by equation (59), we obtain following expressions,
respectively:

(62) b0 =
a1
a3

(63)
b20 − c20p2
2b1

=
a0
a3

(64)
b21 + 2b0 − 2c0p2

2b1
=
a2
a3
.

The equation (59) is rearranged to get following expression for p2:

(65) p2 =
a3 − 2b1
a3

.

From (62) we note that b0 has been evaluated, and from (65)
we note that p2 is expressed in terms of b1. Eliminating p2 from
equations, (63) and (64), and using equation, (65), we obtain the
following two expressions in b1 and c0:

(66) a3c
2
0 (2b1 − a3) = 2a0a3b1 − a21

(67) 2c0 (2b1 − a3) = 2a2b1 − 2a1 − a3b21.
Observe that both the equations, (66) and (67), contain the factor,
c0 (2b1 − a3) , on the left hand side. Therefore dividing equation
(66) by (67) results in the elimination of factor, c0 (2b1 − a3) , and



14 Alabama Journal of Mathematics

after some rearrangement we get an expression for c0 in terms of
b1 as shown below:

(68) c0 =
2
¡
2a0a3b1 − a21

¢
a3 (2a2b1 − 2a1 − a3b31)

.

(Notice that in deriving (68), we have tacitly assumed that
c0 (2b1 − a3) 6= 0. If c0 (2b1 − a3) = 0, then either c0 = 0, in
which case W2 (x) factors easily (see (52)), or else 2b1 − a3 = 0,
in which case p = 0 (see (59)), and hence, (50) can be re-written
as [V2 (x)]

2 = 0 (see 51) and solved using the approach of section
4.) We eliminate c0 from equations, (67) and (68), to obtain the
following expression in terms of b1 only:

(69)
a33b

4
1 − 4a2a

2
3b
3
1 + 4

¡
a1a

2
3 + a

2
2a3 − 4a0a3

¢
b21

+ 8
¡
a0a

2
3 + a

2
1 − a1a2a3

¢
b1 = 0.

Note that in equation (69) b1 emerges as a factor; however, b1 = 0
is not part of the solution to our general quartic equation, since it
makes the value of p2 equal to unity (see (65)), and as a result there
is division by zero in equations (53) to (58). Therefore factoring
out b1 from equation (69) results in a cubic equation in b1 as shown
below:

(70)

b31 −
4a2
a3
b21 +

4
¡
a1a3 + a

2
2 − 4a0

¢
a23

b1 +
8
¡
a0a

2
3 + a

2
1 − a1a2a3

¢
a33

= 0.

Solving the cubic equation above, either by Cardano’s method or
by the unified method described above, b1 is determined. The
remaining unknowns, p2 and c0, are determined from equations,
(65) and (68) respectively.

Since all unknowns have been determined, we are in a position
to represent the given quartic equation (50) in the form of our
constructed quartic equation (53). Therefore we can decompose
the given quartic equation into two factors as

(71)¡
x2 + b1x+ b0

¢− p ¡x2 + c0¢
1− p ·

¡
x2 + b1x+ b0

¢
+ p

¡
x2 + c0

¢
1 + p

= 0.

Equating each factor in (71) to zero, we obtain two quadratic equa-
tions as shown below:

(72) x2 +
b1
1− px+

b0 − c0p
1− p = 0
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(73) x2 +
b1
1 + p

x+
b0 + c0p

1 + p
= 0.

We determine all four roots (x1, x2, x3, and x4) of the given quartic
equation (50), by solving the quadratic equations, (72) and (73).
Quadratic equation (72) provides two roots (x1 and x2) as follows:

x1 =
−b1 + [b21 − 4 (b0 − c0p) (1− p)]

1
2

2 (1− p))

(74) x2 =
−b1 − [b21 − 4 (b0 − c0p) (1− p)]

1
2

2 (1− p)) .

The other two roots, x3 and x4, are obtained by solving the qua-
dratic equation (73) as shown below:

x3 =
−b1 +

£
b21 − 4 (b0 + c0p) (1 + p)

¤ 1
2

2 (1 + p)

(75) x4 =
−b1 −

£
b21 − 4 (b0 + c0p) (1 + p)

¤ 1
2

2 (1 + p)
.

We have solved the general quartic equation and determined all
four roots using the proposed unified method. In the next section,
we offer some numerical examples of cubic and quartic equations
which are solved using the unified method.

7. Numerical Examples

We consider an example of a cubic equation having irrational
and complex roots, and use the unified method to extract all three
roots. The cubic equation chosen is

x3 − 2.049888x2 + 3.1010205x+ 11.313708 = 0.
The parameters, f1 and f2 are determined from the coefficients of
the preceding cubic equation as

f1 = 21.20755, f2 = −15.52471,
using equations (39) and (40). The values of b0, c0, and p are
obtained from (41), (42), and (43) respectively as

b0 = 21.91592, c0 = −0.708376, and p = −9.658787.
The three roots are then determined from (47), (48), and (49) as

x1 = −1.4142, x2 = 1.73205 + 2.23607i, x3 = 1.73205− 2.23607i.
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We now turn our attention to a numerical example of a quar-
tic equation, whose roots are irrational and complex, in order to
represent the most general case. The quartic equation chosen is as
follows:

x4 + 2.0533927x3 − 2.8917903x2 + 7.6758959x+ 29.5803989 = 0.
The parameters, b0, b1, c0 and p are determined from equations,
(62), (70), (68), and (65) respectively, as given below:

b0 = 3.738154, b1 = −13.44884, c0 = 5.336053, and p = 3.754882.
Using these values, the four roots are evaluated from the expression
sets, (74) and (75), as

x1 = −2.236067, x2 = −2.645752, x3 = 1.414213 + 1.732051i,
and x4 = 1.414213− 1.732051i.

8. Conclusions
We have presented a unified method to solve general polyno-

mial equations of degree four or less. The formulas obtained for
the roots of cubic and quartic equations have been verified in the
preceding examples.
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Editor’s Note
The reader will no doubt wonder what happens when this uni-

fied method is applied to a polynomial equation of degree greater
than 4. The author answers this question, at least in part, in
[1]. There, he applies the unified method to the quintic equation
x5+a4x

4+a3x
3+a2x

2+a1x+a0 = 0. The overall strategy involves
converting the quintic into a sextic by multiplying both sides of the
equation by the factor (x+ k) , introducing the root x = −k in the
process. In the fashion of equation (11), the resulting sextic

x6 + (a4 + k)x
5 + (a3 + a4k)x

4 + (a2 + a3k)x
3

+ (a1 + a2k)x
2 + (a0 + a1k)x+ a0k = 0
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is re-written in the form¡
x3 + b2x

2 + b1x1 + b0
¢2 − p2 ¡x3 + c2x2 + c1x1 + c0¢2
1− p2 = 0,

and then decomposed into the product of cubic factors

(x3+b2x2+b1x1+b0)−p(x3+c2x2+c1x1+c0)2
1−p

· (x
3+b2x

2+b1x1+b0)+p(x3+c2x2+c1x1+c0)
2

1+p = 0.

Comparison of coefficients leads to six equations in the eight
unknowns b0, b1, b2, c0, c1, c2, p, and k. The choice of auxiliary equa-
tions (e.g., b2 = 0 and c2 = 0) determines the type of solvable
quintic that can be solved using this technique. From this point
forward, the roots of each cubic are found using the approach in
section 5.
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