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Teachers of calculus are always on the lookout for settings in
which prior algebraic topics can be revisited using more advanced
analytical tools. The quadratic equation provides a good opportu-
nity for such a study.

All calculus students are familiar with the two solutions of the
quadratic equation. If ax2 + bx + c = 0, the two solutions are
x = −b+√b2−4ac

2a and x = −b−√b2−4ac
2a . If a = 0, these solutions

cannot be used since they involve division by 0. In this situation
the equation becomes bx + c = 0, which has a simple solution,
x = − cb .

What happens to the two solutions of the quadratic equation if
a is “close to,” but not equal to, 0? In other words: “As a→ 0 while
b and c are held constant, do the two solutions approach limits as
well?” The evaluation of the limits of the two solutions follows. In
this analysis, we assume that a > 0, since any quadratic equation
with a < 0 can be re-written in equivalent form with a > 0. Also,
for the sake of simplicity, we consider only the case in which b > 0.

Solution 1: x = −b+
√
b2−4ac
2a

lima→0 −b+
√
b2−4ac
2a = lima→0

(−b+
√
b2−4ac)(−b−

√
b2−4ac)

2a(−b−
√
b2−4ac)

= lima→0
b2−(b2−4ac)

2a(−b−
√
b2−4ac)

= lima→0 2c

(−b−
√
b2−4ac)

= 2c
−2b = − cb

[37]
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Solution 2: x = −b−
√
b2−4ac
2a

lima→0+ −b−
√
b2−4ac
2a = lima→0+

(−b−
√
b2−4ac)(−b+

√
b2−4ac)

2a(−b+
√
b2−4ac)

= lima→0+
b2−(b2−4ac)

2a(−b+
√
b2−4ac)

= lima→0+ 2c

(−b+
√
b2−4ac)

= ???

It appears that the limit above depends on the value of c.
Certainly it merits further investigation.

If c > 0, then b2 − 4ac < b2

⇒ √
b2 − 4ac <

√
b2 = b.

i.e.,
√
b2 − 4ac < b

⇒ −b+√b2 − 4ac < −b+ b = 0.
i.e., −b+√b2 − 4ac < 0.
⇒ lima→0+

¡−b+√b2 − 4ac¢ = 0−.
Similarly, for c < 0, we have: lima→0+

¡−b+√b2 − 4ac¢ = 0+.
What this means, as far as our analysis is concerned, is that for
c 6= 0 :

lim
a→0
−b−√b2 − 4ac

2a
= lim
a→0

2c¡−b+√b2 − 4ac¢ = −∞.
Incidentally, for the case in which b < 0, we have:

Solution 1: lima→0 −b+
√
b2−4ac
2a =∞

Solution 2: lima→0 −b−
√
b2−4ac
2a = − cb .

It is not surprising that as a → 0, one of the solutions ap-
proaches − cb ; this is the value that the solution would be if, in
fact, a were equal to 0. Many students reason that since only one
solution emerges when a = 0, both of the limits of the separate
solutions of the quadratic equation must converge to the solution
of the case in which a = 0. This, however, is not the case. One of
the solutions approaches either ∞ or −∞ as a limit.

The quadratic equation below illustrates this pattern of limits:

0.00008x2 + 7.32814x− 4.10182 = 0
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Observe that the value of a is very small relative to those of b and
c.

The solutions are: x =
−7.32814±

√
(7.32814)2−4(0.00008)(−4.10182)

2(0.00008)

= −7.32814±√53.703126
0.00016

= −7.32814±7.32823
0.00016

⇒ x = 0.559732 or x = −91602
It is clear that one solution, x = 0.559732, is approximately equal to
4.10182
7.32814 = − cb . The magnitude of the other solution, x = −91602, is
very large, suggesting that as a→ 0, the solution approaches −∞.

Other Cases

Let us next examine the setting in which b→ 0, while a and c
are held constant. Again, we assume that a > 0 and, in order to
avoid an imaginary limit, we assume that c < 0.

Solution 1: x = −b+
√
b2−4ac
2a

:limb→0 −b+
√
b2−4ac
2a = 0+

√−4ac
2a =

√−4ac
2a =

√−c√
a
=
q
−c
a .

Solution 2: x = −b−
√
b2−4ac
2a

:limb→0 −b−
√
b2−4ac
2a = 0−√−4ac

2a = −
√−4ac
2a = −

√−c√
a
= −

q
−c
a .

These are, in fact, the two solutions that result from solving the

quadratic equation in which b = 0.
³
ax2 + c = 0⇒ x = ±

q
−c
a .
´

i.e., The “solution function” is continuous at b = 0.
Finally, what happens to the two solutions of the quadratic

equation if c → 0, while a and b are held constant? Again, we
assume that a > 0. We consider the case in which b > 0. The case
for b < 0 is similar.

Solution 1: x = −b+
√
b2−4ac
2a

:limc→0 −b+
√
b2−4ac
2a = −b+

√
b2−0

2a = −b+
√
b2

2a = −b+b2a = 0.

Solution 2: x = −b−
√
b2−4ac
2a

:limc→0 −b−
√
b2−4ac
2a = −b−

√
b2−0

2a = −b−
√
b2

2a = −b−b2a = − b
a
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These are, in fact, the two solutions that result from solving the
quadratic equation when c = 0.

¡
ax2 + bx = 0⇒ x (ax+ b) = 0

⇒ x = 0 or x = − b
a .
¢

If these three limit problems were examined in reverse order,
the situation in which a→ 0 would be even more impressive. When
b → 0 or c → 0, the two quadratic solutions simply approach the
two solutions which would result if the linear and constant terms
were respectively deleted. A quite different consequence results
when a→ 0.

This is a good example of the application of the limit concept
to a situation familiar to a student before the calculus. The reader
and students are invited to find other such examples.
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