Some Simple Proofs of the Sums of
Some Alternating Series

By HUSSAIN ELALAOUI-TALIBI

Introduction

In this paper, we give some simple proofs of the convergence
of two classical convergent alternating series with sums In2, and 7.

The classical series
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are usually seen in second or third semester Calculus courses, and
are approached via power series expansion of In(z + 1), and
tan~! (x). The proofs of those expansions use Taylor’s Remain-
der Theorem which is pretty advanced. An elementary proof of
the sum of these series can be found in [1]. We will give some dif-
ferent elementary proofs of these sums involving geometric series
and simple integration.
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Two Simple Proofs
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Using the formula for the sum of the first n terms of a geometric
series, we have
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If we let n — oo in eq. 1, the result follows. |
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Using the formula for the sum of the first n terms of a geometric
series, we have
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since fo T ;;2 dr = %, which can be verified using the substitution
u=z'/2. Now,
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So let n — oo in eq. 2, and the result follows. O
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