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Introduction

In this paper, we give some simple proofs of the convergence
of two classical convergent alternating series with sums ln 2, and π

4 .
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are usually seen in second or third semester Calculus courses, and
are approached via power series expansion of ln(x + 1), and
tan−1 (x) . The proofs of those expansions use Taylor’s Remain-
der Theorem which is pretty advanced. An elementary proof of
the sum of these series can be found in [1]. We will give some dif-
ferent elementary proofs of these sums involving geometric series
and simple integration.
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Two Simple Proofs

Theorem 1.
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Using the formula for the sum of the first n terms of a geometric
series, we have
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If we let n→∞ in eq. 1, the result follows. ¤

Theorem 2.
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Proof. First we observe that
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Using the formula for the sum of the first n terms of a geometric
series, we have
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2 , which can be verified using the substitution

u = x1/2. Now,
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So let n→∞ in eq. 2, and the result follows. ¤
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