Some Simple Proofs of the Sums of Some Alternating Series

By Hussain Elalaoui-Talibi

Introduction
In this paper, we give some simple proofs of the convergence of two classical convergent alternating series with sums $\ln 2$, and $\frac{\pi}{4}$.

The classical series

$$
\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\ldots=\ln 2
$$

and

$$
\sum_{k=0}^{\infty} \frac{(-1)^{k}}{2 k+1}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\ldots=\frac{\pi}{4}
$$

are usually seen in second or third semester Calculus courses, and are approached via power series expansion of $\ln (x+1)$, and $\tan ^{-1}(x)$. The proofs of those expansions use Taylor's Remainder Theorem which is pretty advanced. An elementary proof of the sum of these series can be found in [1]. We will give some different elementary proofs of these sums involving geometric series and simple integration.

Two Simple Proofs

Theorem 1. $\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k}=\ln 2$.
Proof. First note that for $k \in \mathbf{N}, \int_{0}^{1} x^{k-1} d x=\frac{1}{k}$, so that

$$
\begin{aligned}
\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} & =\sum_{k=1}^{\infty} \int_{0}^{1}(-1)^{k-1} x^{k-1} d x \\
& =\int_{0}^{1}\left(\sum_{k=1}^{n}(-1)^{k-1} x^{k-1}\right) d x
\end{aligned}
$$

Using the formula for the sum of the first n terms of a geometric series, we have

$$
\sum_{k=1}^{\infty}(-1)^{k-1} x^{k-1}=\frac{1-(-x)^{n}}{1-(-x)}=\frac{1}{1+x}-\frac{(-x)^{n}}{1+x}
$$

so that

$$
\begin{align*}
\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} & =\int_{0}^{1}\left(\frac{1}{x+1}-\frac{(-x)^{n}}{1+x}\right) d x \\
& =\ln 2-\int_{0}^{1} \frac{(-x)^{n}}{1+x} d x \tag{1}
\end{align*}
$$

but

$$
\left|\int_{0}^{1} \frac{(-x)^{n}}{1+x} d x\right| \leq \int_{0}^{1} \frac{x^{n}}{1+x} d x \leq \int_{0}^{1} x^{n} d x=\frac{1}{n+1}
$$

If we let $n \rightarrow \infty$ in eq. 1 , the result follows.

ThEOREM 2. $\sum_{k=0}^{\infty} \frac{(-1)^{k}}{2 k+1}=\frac{\pi}{4}$.
Proof. First we observe that $\int_{0}^{1} x^{k-\frac{1}{2}} d x=\frac{1}{k+\frac{1}{2}}$, so that $\frac{1}{2} \int_{0}^{1} x^{k-\frac{1}{2}} d x=\frac{1}{2 k+1}$, and it follows that

$$
\begin{aligned}
\sum_{k=0}^{n} \frac{(-1)^{k}}{2 k+1} & =\sum_{k=0}^{n} \frac{1}{2} \int_{0}^{1}(-1)^{k} x^{k-\frac{1}{2}} d x \\
& =\frac{1}{2}\left(\int_{0}^{1} \sum_{k=0}^{n}(-1)^{k} x^{k-\frac{1}{2}}\right) d x
\end{aligned}
$$

Using the formula for the sum of the first n terms of a geometric series, we have

$$
\sum_{k=0}^{\infty}(-1)^{k} x^{k-\frac{1}{2}}=\frac{x^{-1 / 2}\left(1-(-x)^{n+1}\right)}{1-(-x)}=\frac{x^{-1 / 2}}{1+x}-\frac{x^{-1 / 2}(-x)^{n+1}}{1+x}
$$

so that

$$
\begin{align*}
\sum_{k=0}^{n} \frac{(-1)^{k}}{2 k+1} & =\frac{1}{2}\left(\int_{0}^{1} \frac{x^{-1 / 2}}{1+x} d x-\int_{0}^{1} \frac{x^{-1 / 2}(-x)^{n+1}}{1+x} d x\right) \\
& =\frac{1}{2}\left(\frac{\pi}{2}-\int_{0}^{1} \frac{x^{-1 / 2}(-x)^{n+1}}{1+x} d x\right) \\
& =\frac{\pi}{4}-\frac{1}{2} \int_{0}^{1} \frac{x^{-1 / 2}(-x)^{n+1}}{1+x} d x \tag{2}
\end{align*}
$$

since $\int_{0}^{1} \frac{x^{-1 / 2}}{1+x} d x=\frac{\pi}{2}$, which can be verified using the substitution $u=x^{1 / 2}$. Now,

$$
\left|\int_{0}^{1} \frac{x^{-1 / 2}(-x)^{n+1}}{1+x} d x\right| \leq \int_{0}^{1} \frac{x^{n+\frac{1}{2}}}{1+x} d x \leq \int_{0}^{1} x^{n+\frac{1}{2}} d x=\frac{1}{n+\frac{3}{2}} .
$$

So let $n \rightarrow \infty$ in eq. 2, and the result follows.

References

[1] Zheng, Liu, An Elementary Proof for Two Basic Alternating Series. Amer. Math. Monthly 109 (2002) 187-188.

Department of Mathematics
Jermaine J. Ferguson
Tuskegee University
Tuskegee, AL 36088
talibi@tuskegee.edu
(334)-727-8212

