Perfect Matchings - Enumeration and Properties of Extendability

By Emily Hynds and Mary Beth Cole

Abstract

A perfect matching of a graph G is an independent set of edges in G that will cover all of the vertices of G. Early studies of perfect matchings centered on the problem of enumeration. How many perfect matchings are contained in a given graph G ? While the problem has since been shown to be computationally difficult for general graphs G, it has been studied for infinite families of special graphs. We begin by using a helpful classification method to count the number of perfect matchings in several infinite families of graphs. For graphs of the form $G=H \times K_{2}$, we use another classification method to again help us count the number of perfect matchings in the graph G. More recently, studies of perfect matchings have included defining characterizations of n-extendable graphs. A graph G of order greater than $2 n$ and having a perfect matching is defined to be n-extendable if every independent set of edges of size n can be extended to a perfect matching in G. We explore the properties of extendability in certain Cartesian product graphs.

Introduction

We will consider only finite, undirected, connected graphs without loops or multiple edges. For terms or notation not defined here, see [1]. For a graph G, we will denote the vertex set of G by $V(G)$ and the edge set of G by $E(G)$. When two vertices are connected by an edge they are said to be adjacent. Similarly, when two edges share a vertex they are said to be adjacent. For adjacent vertices
u and v in the graph G, we will denote the edge between them by $u v$.

Given a vertex v in a graph G, the neighborhood of v, denoted $N(v)$, is the set $\{w \in V(G): w$ is adjacent to $v\}$. A set F of edges of G is said to cover $V(G)$ if every vertex of G belongs to at least one edge from F. An independent set of edges (or vertices) in G is a set of edges (or vertices) of G which are pairwise non-adjacent.

For a positive integer k, a k-matching of G is an independent set of edges of size k. A perfect matching (or 1-factor) of a graph G is an independent set of edges in G that will cover all of the vertices of G. Some obvious conditions on G for a perfect matching to exist are that $|V(G)|$ must be even and the degree of each vertex must be at least one. While these conditions are necessary they are certainly not sufficient. For example, the graph in Figure 1 has no perfect matchings.

Fig. 1
For the following definitions, G_{1} and G_{2} are two graphs with disjoint vertex sets. The Cartesian product $G=G_{1} \times G_{2}$ has $V(G)=V\left(G_{1}\right) \times V\left(G_{2}\right)$, and two vertices $\left(u_{1}, u_{2}\right)$ and $\left(v_{1}, v_{2}\right)$ are adjacent if and only if either

$$
u_{1}=v_{1} \text { and } u_{2} v_{2} \in E\left(G_{2}\right) \quad \text { or } \quad u_{2}=v_{2} \text { and } u_{1} v_{1} \in E\left(G_{1}\right)
$$

As in Plummer [2], a graph G of order greater than $2 n$ and having a perfect matching is defined to be n-extendable if every independent set of edges of size n can be extended to a perfect matching in G. Let $S \subseteq V(G)$. By $G-S$ we will mean the graph with vertex set $V(G)-S$ and edge set $\{u v: u v \in E(G)$ and $u \notin S$ and $v \notin S\}$.

A Method for Enumerating Perfect Matchings

We use a helpful classification method to count the number of perfect matchings in a graph G. Every vertex v must be covered by a perfect matching, which means there is exactly one $v v_{i}$, for some $v_{i} \in N(v)$, in every perfect matching. We know that the number
of perfect matchings containing $v v_{i}$ equals the number of perfect matchings in $G-\left\{v, v_{i}\right\}$. Therefore, for any $v \in V(G)$, we can classify the perfect matchings of G by which edge $v v_{i}$ they contain. Throughout the paper we will let $f(G)$ be the number of perfect matchings in the graph G. So, for any fixed vertex v of G,

$$
f(G)=\sum_{w \in N(v)} f(G-\{v, w\})
$$

Fig. 2
For example, consider the graph Q_{3} (Figure 2a). For any $v w \in E\left(Q_{3}\right)$, the graph $Q_{3}-\{v, w\}$ is isomorphic to $P_{3} \times K_{2}$ (Figure 2b). Using the labeling of Figure 2a we see that $f\left(Q_{3}\right)=$ $f\left(Q_{3}-\left\{v, v_{1}\right\}\right)+f\left(Q_{3}-\left\{v, v_{2}\right\}\right)+f\left(Q_{3}-\left\{v, v_{3}\right\}\right)$. Thus,

$$
f\left(Q_{3}\right)=3 \cdot f\left(P_{3} \times K_{2}\right)=9 .
$$

Now consider the graph $K_{n, n}$, the complete bipartite graph, where one part has vertex set $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and the other part has vertex set $\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$. Consider vertex v_{1} with $N\left(v_{1}\right)=$ $\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$. Using our method, it follows that $f\left(K_{n, n}\right)=$ $\sum_{i=1}^{n} f\left(K_{n, n}-\left\{v_{1}, w_{i}\right\}\right)$. Realizing that for every $v w \in E\left(K_{n, n}\right)$, we have $K_{n, n}-\{v, w\} \cong K_{n-1, n-1}$, we can see that $f\left(K_{n, n}\right)=$ $n \cdot f\left(K_{n-1, n-1}\right)$. When we expand further we get $f\left(K_{n, n}\right)=$ $n(n-1)(n-2) \ldots(2) f\left(K_{1,1}\right)$. The graph $K_{1,1}$ has one perfect matching, so

$$
f\left(K_{n, n}\right)=n!.
$$

Similarly, for $K_{n}\left(n\right.$-even), $f\left(K_{n}\right)=(n-1) f\left(K_{n-2}\right)$. Expanded, $f\left(K_{n}\right)=(n-1)(n-3) \ldots(3) f\left(K_{2}\right)$. The graph K_{2} has one perfect matching, so

$$
f\left(K_{n}\right)=(n-1)(n-3) \ldots(3)(1) \quad(n \text {-even }) .
$$

We also use this method on several classes of Cartesian product graphs. One example is the graph $P_{3} \times P_{n}$. For this example we will define T_{m} as $\left(P_{3} \times P_{m+1}\right)-\{v\}$, where $v \in V\left(P_{3} \times P_{m+1}\right)$ has degree two. (See Figure 3a.) Before we calculate $f\left(P_{3} \times P_{n}\right)$ we will calculate $f\left(T_{m}\right)$.

T_{m}

(a)

(b)

(c)

Fig. 3
With reference to Figure 3, observe that:
$f\left(T_{m}\right)=f\left(T_{m}-\left\{v_{m+1}, w_{m+1}\right\}\right)+f\left(T_{m}-\left\{v_{m+1}, v_{m}\right\}\right)$, and $f\left(T_{m}-\left\{v_{m+1}, w_{m+1}\right\}\right)=f\left(P_{3} \times P_{m}\right)$. (See Figure 3b.) Next observe that $f\left(T_{m}-\left\{v_{m+1}, v_{m}\right\}\right)=f\left(T_{m-2}\right)$ because, as we see in Figure 3c, each perfect matching of $T_{m}-\left\{v_{m+1}, v_{m}\right\}$ must contain the edges $u_{m} u_{m-1}$ and $w_{m+1} w_{m}$. But, finally, we note that the $\operatorname{graph}\left(T_{m}-\left\{v_{m+1}, v_{m}\right\}\right)-\left\{u_{m}, u_{m-1}, w_{m+1}, w_{m}\right\}$ is isomorphic to T_{m-2}. Therefore,

$$
f\left(T_{m}\right)=f\left(P_{3} \times P_{m}\right)+f\left(T_{m-2}\right)
$$

Fig. 4
Now we will calculate $f\left(P_{3} \times P_{n}\right)$. (See Figure 4a.) If $P_{3} \times P_{n}$ is to have a perfect matching, n must be even. Then $f\left(P_{3} \times P_{n}\right)=$ $f\left(P_{3} \times P_{n}-\left\{u_{n}, v_{n}\right\}\right)+f\left(P_{3} \times P_{n}-\left\{u_{n}, u_{n-1}\right\}\right)$. We will look at each of the terms of the sum individually.

First we will consider $f\left(P_{3} \times P_{n}-\left\{u_{n}, v_{n}\right\}\right)$. (See Figure 4b.) We can see that $f\left(P_{3} \times P_{n}-\left\{u_{n}, v_{n}\right\}\right)=f\left(T_{n-2}\right)$ because the edge $w_{n} w_{n-1}$ must be a part of any perfect matching and $\left(P_{3} \times P_{n}-\left\{u_{n}, v_{n}\right\}\right)-\left\{w_{n}, w_{n-1}\right\}$ is isomorphic to T_{n-2}.

(a)

(b)

Fig. 5
Now consider $f\left(P_{3} \times P_{n}-\left\{u_{n}, u_{n-1}\right\}\right)$, which must be broken down further. Let $R=\left(P_{3} \times P_{n}-\left\{u_{n}, u_{n-1}\right\}\right)$. (See Figure 5a.) Then $f(R)=f\left(R-\left\{v_{n}, w_{n}\right\}\right)+f\left(R-\left\{v_{n}, v_{n-1}\right\}\right)$. We see that $f\left(R-\left\{v_{n}, w_{n}\right\}\right)=f\left(T_{n-2}\right)$ since $R-\left\{v_{n}, w_{n}\right\}$ and T_{n-2} are isomorphic. Now we note that $f\left(R-\left\{v_{n}, v_{n-1}\right\}\right)=$ $f\left(P_{3} \times P_{n-2}\right)$, because, as we can see in Figure 5b, any perfect matching of $R-\left\{v_{n}, v_{n-1}\right\}$ must include the edge $w_{n} w_{n-1}$ and $\left(R-\left\{v_{n}, v_{n-1}\right\}\right)-\left\{w_{n}, w_{n-1}\right\}$ is isomorphic to $P_{3} \times P_{n-2}$.

Combining these results we see that

$$
f\left(P_{3} \times P_{n}\right)=f\left(T_{n-2}\right)+f\left(T_{n-2}\right)+f\left(P_{3} \times P_{n-2}\right)
$$

or that

$$
\begin{equation*}
f\left(P_{3} \times P_{n}\right)=2 f\left(T_{n-2}\right)+f\left(P_{3} \times P_{n-2}\right) . \tag{1}
\end{equation*}
$$

Recall from our prior work that

$$
\begin{equation*}
f\left(T_{m}\right)=f\left(P_{3} \times P_{m}\right)+f\left(T_{m-2}\right) \tag{2}
\end{equation*}
$$

From eq. 2 we can derive that $f\left(T_{n-2}\right)=f\left(P_{3} \times P_{n-2}\right)+f\left(T_{n-4}\right)$. Substituting this result into eq. 1 we conclude that
(3)

$$
\begin{aligned}
f\left(P_{3} \times P_{n}\right) & =2\left(f\left(P_{3} \times P_{n-2}\right)+f\left(T_{n-4}\right)\right)+f\left(P_{3} \times P_{n-2}\right) \\
& =3 f\left(P_{3} \times P_{n-2}\right)+2 f\left(T_{n-4}\right)
\end{aligned}
$$

From eq. 1 we can derive that $2 f\left(T_{n-4}\right)=f\left(P_{3} \times P_{n-2}\right)-$ $f\left(P_{3} \times P_{n-4}\right)$. Making a final substitution of this result into eq. 3 we get our result:

$$
f\left(P_{3} \times P_{n}\right)=4 f\left(P_{3} \times P_{n-2}\right)-f\left(P_{3} \times P_{n-4}\right) .
$$

Using similar strategies we were able to discover recurrence relations for $f\left(P_{2} \times P_{n}\right), f\left(P_{2} \times C_{n}\right)$, and $f\left(P_{4} \times P_{n}\right)$.

The following is a summary of the results using this method of classification.

	n-even	n-odd
$f\left(C_{n}\right)$	2	0
$f\left(K_{n}\right)$	$(n-1)(n-3) \ldots(3)(1)$	0
$f\left(K_{n, n}\right)$	$n!$	$n!$
$f\left(P_{2} \times P_{n}\right)$	$f\left(P_{2} \times P_{n-1}\right)+f\left(P_{2} \times P_{n-2}\right)$	same
$f\left(P_{3} \times P_{n}\right)$	$4 f\left(P_{3} \times P_{n-2}\right)-f\left(P_{3} \times P_{n-4}\right)$	0
$f\left(P_{4} \times P_{n}\right)$	$f\left(P_{4} \times P_{n-1}\right)+5 f\left(P_{4} \times P_{n-2}\right)+$	same
	$f\left(P_{4} \times P_{n-3}\right)-f\left(P_{4} \times P_{n-4}\right)$	
$f\left(P_{2} \times C_{n}\right)$	$f\left(P_{2} \times C_{n-1}\right)+f\left(P_{2} \times C_{n-2}\right)$	$f\left(P_{2} \times C_{n-1}\right)+$ $f\left(P_{2} \times C_{n-2}\right)-2$

Perfect Matchings in Graphs of the Form $G=H \times K_{2}$

For graphs of the form $G=H \times K_{2}$, we use another classification method to help in counting the number of perfect matchings. In $G=H \times K_{2}$ there are two copies of the graph H which we will call H_{v} and H_{w}. Let $V\left(H_{v}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and let $V\left(H_{w}\right)=\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$, where v_{i} and w_{i} and are corresponding vertices in H. (i.e. $v_{i} v_{j} \in E\left(H_{v}\right)$ if and only if $w_{i} w_{j} \in E\left(H_{w}\right)$.) Also, the edge $v_{i} w_{j} \in E\left(H \times K_{2}\right)$ if and only if $i=j$. We will call all edges not completely contained in H_{v} or H_{w} crossover edges. (e.g., $v_{1} w_{1}$ is a crossover.)

For this type of graph we classify the perfect matchings by the number of edges used from H_{v} and H_{w}. Note that when $0 \leq k \leq$ $\left\lfloor\frac{n}{2}\right\rfloor$, and a perfect matching M contains exactly k edges from H_{v},
then M contains exactly k edges from H_{w}. So, for $0 \leq k \leq\left\lfloor\frac{n}{2}\right\rfloor$, let F_{k} be the set of all perfect matchings of G each of which contains exactly k edges from H_{v}. Then we get the following result:

$$
f(G)=\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor}\left|F_{k}\right| .
$$

For example, if $G=P_{4} \times K_{2}$ (See Figure 6), then
$F_{0}=\left\{\left\{v_{1} w_{1}, v_{2} w_{2}, v_{3} w_{3}, v_{4} w_{4}\right\}\right\} \quad\left|F_{0}\right|=1$
$F_{0}=\left\{\left\{v_{1} v_{2}, w_{1} w_{2}, v_{3} w_{3}, v_{4} w_{4}\right\}\right\},\left\{v_{1} w_{1}, v_{2} v_{3}, w_{2} w_{3}, v_{4} w_{4}\right\},\left|F_{1}\right|=3$ $\left.\left\{v_{1} w_{1}, v_{2} w_{2}, v_{3} v_{4}, w_{3} w_{4}\right\}\right\}$
$F_{2}=\left\{\left\{v_{1} v_{2}, v_{3} v_{4}, w_{1} w_{2}, w_{3} w_{4}\right\}\right\}$

$$
\left|F_{2}\right|=1
$$

It follows that $f\left(P_{4} \times K_{2}\right)=1+3+1=5$

Fig. 6
Now consider the general graph $P_{n} \times K_{2}$, where P_{n} is the path $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$. In order to compute $f(G)$ using the above method, we need to determine the size of F_{k} for all $k, 0 \leq k \leq\left\lfloor\frac{n}{2}\right\rfloor$. We let $h_{k, n}$ be the number of k-matchings of P_{n}. Then $h_{1, n}=n-1$, the number of edges in P_{n}.

Note that every k-matching either includes $v_{1} v_{2}$ or it does not. The number of k-matchings of P_{n} that include $v_{1} v_{2}$ equals the number of $(k-1)$-matchings of $P_{n}-\left\{v_{1}, v_{2}\right\}$. That number is $h_{k-1, n-2}$. The number of k-matchings of P_{n} which do not include the edge $v_{1} v_{2}$ equals the number of k-matchings of $P_{n}-\left\{v_{1}\right\}$. That number is $h_{k, n-1}$. Therefore, $h_{k, n}=h_{k-1, n-2}+h_{k, n-1}$. Using an induction argument we can show that $h_{k, n}=\binom{n-k}{k}$ for $2 \leq k \leq\left\lfloor\frac{n}{2}\right\rfloor$.

In $P_{n} \times K_{2}, \quad\left|F_{k}\right|=h_{k, n}$ since any perfect matching of $P_{n} \times K_{2}$ which includes exactly k edges from H_{v} must also include $n-2 k$ crossover edges. The $2 k$ vertices of h_{w} left uncovered by these crossover edges can be covered by a k-matching of H_{w} in exactly one way, which is to use the edges corresponding to those used in H_{v}.

So,

$$
\begin{aligned}
f\left(P_{n} \times K_{2}\right) & =\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor}\left|F_{k}\right|=\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor} h_{k, n}\left(\text { where } h_{0, n}=1, h_{1, n}=n-1\right) \\
& =\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor}\binom{n-k}{k} .
\end{aligned}
$$

For $G=C_{n} \times K_{2}$, let $g_{k, n}$ be the number of k-matchings of C_{n}. Again, in this case, we see that $\left|F_{k}\right|=g_{k, n}$. So $f\left(C_{n} \times K_{2}\right)=$ $\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor} g_{k, n}$ where $g_{0, n}=1 ; g_{1, n}=n$; and $g_{k, n}=g_{k, n-1}+g_{k-1, n-2}$. It can also be shown that $g_{k, n}=2 h_{k, n}-h_{k, n-1}=2\binom{n-k}{k}-\binom{n-k-1}{k}$. Consequently,

$$
f\left(C_{n} \times K_{2}\right)=\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor}\left[2\binom{n-k}{k}-\binom{n-k-1}{k}\right]
$$

For $G=K_{n, n} \times K_{2}$, let $b_{k, n}$ be the number of k-matchings of $K_{n, n}$. Clearly $b_{1, n}=n^{2}$, the number of edges in $K_{n, n}$. With a similar argument to that used for $P_{n} \times K_{2}$, we can show that for k such that $2 \leq k \leq\left\lfloor\frac{n}{2}\right\rfloor$,

$$
b_{k, n}=\frac{\left(\frac{n!}{(n-k)!}\right)^{2}}{k!}
$$

Now any perfect matching of $K_{n, n} \times K_{2}$ which includes exactly k edges from H_{v} must also include $n-2 k$ crossover edges. When the vertices of H_{w} that are covered by these crossover edges are removed from H_{w}, the graph that remains is $K_{k, k}$. From an earlier result we know that these $2 k$ vertices can be covered $f\left(K_{k, k}\right)=k$! ways. So, $\left|F_{k}\right|=b_{k, n} \cdot k$!. Combining these results we see that

$$
f\left(K_{n, n} \times K_{2}\right)=\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor} \frac{\left(\frac{n!}{(n-k)!}\right)^{2}}{k!} \cdot k!=\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor}\left(\frac{n!}{(n-k)!}\right)^{2} .
$$

Extending Perfect Matchings

We will now change our focus from counting perfect matchings to properties of extendability in certain Cartesian product graphs. We will make use of the following theorem of Plummer [2].

Theorem 1. If $n \geq 2$ and G is n-extendable, then G is also ($n-1$)-extendable.

We begin by characterizing the values of r for which the graph $K_{n} \times K_{2}$ is r-extendable.

Theorem 2. The graph $K_{n} \times K_{2}$ is $\left\lfloor\frac{n}{2}\right\rfloor$-extendable.
Proof. We use the same notation as before, letting $G=H \times$ K_{2}, where H_{v} and H_{w} are copies of K_{n}. Let M be any set of $\left\lfloor\frac{n}{2}\right\rfloor$ edges in $K_{n} \times K_{2}$. The graph $K_{n} \times K_{2}$ is $\left\lfloor\frac{n}{2}\right\rfloor$-extendable if any such M extends to a perfect matching.

Let $|M|=x+y+z$, where x is the number of edges from H_{v} in M, y is the number of crossover edges in M, and z is the number of edges from H_{w} in M.

Case 1 The set M does not contain crossover edges $(y=0)$.
Subcase 1 Suppose n is even.
If $x($ or $z)=\left\lfloor\frac{n}{2}\right\rfloor$, then M is a perfect matching of H_{v} (or H_{w}). To extend this to a perfect matching of $K_{n} \times$ K_{2}, add edges that are a perfect matching of H_{v} (or H_{w}). If $x \neq\left\lfloor\frac{n}{2}\right\rfloor$ and $z \neq\left\lfloor\frac{n}{2}\right\rfloor$, then $x<\left\lfloor\frac{n}{2}\right\rfloor$ and $z<$ $\left\lfloor\frac{n}{2}\right\rfloor$. Because K_{n} is clearly $\left(\left\lfloor\frac{n}{2}\right\rfloor-1\right)$-extendable, it follows from Theorem 1 that K_{n} is x-extendable and z-extendable. Thus, M can be extended to a perfect matching of $K_{n} \times K_{2}$ by extending the set of x edges in H_{v} and the set of z edges in H_{w}.
Subcase 2 Suppose n is odd.
Since $2 \cdot\left\lfloor\frac{n}{2}\right\rfloor<n$, there exists $j, 1 \leq j \leq n$, such that neither v_{j} nor w_{j} is incident to any edge in M. To extend M to a perfect matching of $K_{n} \times K_{2}$, add the crossover $v_{j} w_{j}$ and then extend in the graphs $K_{n-1}=H_{v}-\left\{v_{j}\right\}$ and $K_{n-1}=H_{w}-\left\{w_{j}\right\}$ separately.
Case 2 The set M contains at least one crossover edge $(y \neq 0)$. Let $v_{1} w_{1}, v_{2} w_{2}, \ldots, v_{y} w_{y}$ represent the crossover edges in M. We can extend M to a perfect matching if we can extend the set of edges from M in the graph $K_{n} \times$ $K_{2}-\left\{v_{1}, v_{2}, \ldots, v_{y}, w_{1}, w_{2}, \ldots, w_{y}\right\}$ to a perfect matching. Call this set of edges M^{\prime}. The remaining graph is of the form $K_{n-y} \times K_{2}$. Since there are no crossovers from the remaining graph in the set M^{\prime} and since we deleted only crossover edges from our original graph, we know that M^{\prime} has $x+z=\left\lfloor\frac{n}{2}\right\rfloor-y$ edges. This means that $x \leq\left\lfloor\frac{n}{2}\right\rfloor-y$ and $z \leq\left\lfloor\frac{n}{2}\right\rfloor-y$ where x is the number of edges from M in the original $H_{v}=K_{n}$ and from our present $H_{v^{*}}=K_{n-y}$, and z is the number of edges from M in the original $H_{w}=K_{n}$ and from our present $H_{w^{*}}=K_{n-y}$.

We showed in Case 1 that for M, an $(x+y+z)$ matching of $K_{n} \times K_{2}$, if $y=0$ and $x+z=\left\lfloor\frac{n}{2}\right\rfloor$, then M can be extended to a perfect matching of $K_{n} \times K_{2}$. Thus for the current graph $K_{n-y} \times K_{2}$ and the $(x+z)$ matching M^{\prime}, if we can show that $x+z \leq\left\lfloor\frac{n-y}{2}\right\rfloor$, then by Theorem 1 and Case 1 we can extend M^{\prime} to a perfect matching of $K_{n-y} \times K_{2}$, from which it then follows that M can be extended to a perfect matching of G when
$y \neq 0$. It is easy to show that since $x+z=\left\lfloor\frac{n}{2}\right\rfloor-y$ and $y \geq 1$, it must be the case that $x+z \leq\left\lfloor\frac{n-y}{2}\right\rfloor$. We have now shown that $K_{n} \times K_{2}$ is $\left\lfloor\frac{n}{2}\right\rfloor$-extendable.

Theorem 3. If $r>\left\lfloor\frac{n}{2}\right\rfloor$, then $K_{n} \times K_{2}$ is not r-extendable.
Proof. To show that $K_{n} \times K_{2}$ is not r-extendable for any $r>\left\lfloor\frac{n}{2}\right\rfloor$, it follows from Theorem 1 that we need only to show that $K_{n} \times K_{2}$ is not $\left(\left\lfloor\frac{n}{2}\right\rfloor+1\right)$-extendable.

If n is odd let $M=\left\{v_{1} v_{2}, v_{3} v_{4}, \ldots, v_{n-2} v_{n-1}, w_{1} w_{n}\right\}$, and if n is even let $M=\left\{v_{1} v_{2}, v_{3} v_{4}, \ldots, v_{n-3} v_{n-2}, v_{n-1} w_{n-1}, w_{n-2} w_{n}\right\}$. In each case M is an $\left(\left\lfloor\frac{n}{2}\right\rfloor+1\right)$-matching of $K_{n} \times K_{2}$ which covers all of the neighbors v_{n} of but does not cover v_{n}. Therefore M cannot be extended to a perfect matching.

An equivalent statement to Theorem 3 is that if $K_{n} \times K_{2}$ is r-extendable, then $r \leq\left\lfloor\frac{n+2}{2}\right\rfloor-1$. For our final result we give a generalization of this theorem.

Theorem 4. If $K_{n} \times K_{m}$ is r-extendable, then $r \leq\left\lfloor\frac{n+m}{2}\right\rfloor-1$.
Proof. We will show that $K_{n} \times K_{m}$ is not $\left\lfloor\frac{n+m}{2}\right\rfloor$-extendable. We will assume that m is even and that m is at least 4. Let $V\left(K_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $V\left(K_{m}\right)=\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$. Then $V\left(K_{n} \times K_{m}\right)=\left\{\left(v_{i}, w_{j}\right): 1 \leq i \leq n\right.$ and $\left.1 \leq j \leq m\right\}$. To make the notation easier to handle, we let $x=\left(v_{1}, w_{1}\right), a_{i}=\left(v_{i}, w_{1}\right)$, and $b_{j}=\left(v_{i}, w_{j}\right)$ for $2 \leq i \leq n$ and $2 \leq j \leq m$.
Case 1 The integer n is even.
Let M be the following set of independent edges:

$$
\begin{aligned}
M= & \left\{a_{2} a_{3}, a_{4} a_{5}, \ldots, a_{n-2} a_{n-1}, b_{2} b_{3}, b_{4} b_{5},\right. \\
& \left.\ldots, b_{m-2} b_{m-1}, a_{n} z, b_{m} y\right\}
\end{aligned}
$$

where $z=\left(v_{n}, w_{2}\right)$ and $y=\left(v_{2}, w_{m}\right)$. Then $|M|=\left\lfloor\frac{n+m}{2}\right\rfloor$ and all of the neighbors of x are covered by M. It is clear that M cannot be extended to a perfect matching of $K_{n} \times$ K_{m}.
Case 2 The integer n is odd.
Here we let M be the set of independent edges given by

$$
\begin{aligned}
M= & \left\{a_{2} a_{3}, a_{4} a_{5}, \ldots, a_{n-1} a_{n}, b_{2} b_{3}, b_{4} b_{5},\right. \\
& \left.\ldots, b_{m-2} b_{m-1}, b_{m} y\right\}
\end{aligned}
$$

where $y=\left(v_{2}, w_{m}\right)$. As in the previous case $|M|=$ $\left\lfloor\frac{n+m}{2}\right\rfloor$, and all of the neighbors of x are covered by M and so M is not contained in any perfect matchings of $K_{n} \times K_{m}$.

These cases together show that $K_{n} \times K_{m}$ is not $\left\lfloor\frac{n+m}{2}\right\rfloor-$ extendable and thus is not r-extendable for any $r>\left\lfloor\frac{n+m}{2}\right\rfloor$.

References

[1] G. Chartrand, L. Lesniak, Graphs and Digraphs, Chapman and Hall, London, 1996.
[2] Plummer, M.D., "Matching Extension and Connectivity in Graphs", Congressus Numerantium, Vol. 63, pp. 147-160, 1988.
[3] Propp, James, "Enumeration of Matchings: Problems and Progress," New Perspectives in Algebraic Combinatorics, Berkeley, CA, 1996-97), pp. 255-291.

Department of Mathematics \& Computer Science
Russell Hall 310
Samford University
800 Lakeshore Dr.
Birmingham, AL 35229
eahynds@samford.edu
(205)726-2034

