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Abstract

A perfect matching of a graph G is an independent set of edges
in G that will cover all of the vertices of G. Early studies of perfect
matchings centered on the problem of enumeration. How many
perfect matchings are contained in a given graph G? While the
problem has since been shown to be computationally difficult for
general graphs G, it has been studied for infinite families of spe-
cial graphs. We begin by using a helpful classification method to
count the number of perfect matchings in several infinite families
of graphs. For graphs of the form G = H × K2, we use another
classification method to again help us count the number of per-
fect matchings in the graph G. More recently, studies of perfect
matchings have included defining characterizations of n-extendable
graphs. A graph G of order greater than 2n and having a perfect
matching is defined to be n-extendable if every independent set of
edges of size n can be extended to a perfect matching in G.We ex-
plore the properties of extendability in certain Cartesian product
graphs.

Introduction

We will consider only finite, undirected, connected graphs with-
out loops or multiple edges. For terms or notation not defined here,
see [1]. For a graph G, we will denote the vertex set of G by V (G)
and the edge set of G by E (G) . When two vertices are connected
by an edge they are said to be adjacent. Similarly, when two edges
share a vertex they are said to be adjacent. For adjacent vertices

[17]



18 Alabama Journal of Mathematics

u and v in the graph G, we will denote the edge between them by
uv.

Given a vertex v in a graph G, the neighborhood of v, denoted
N (v) , is the set {w ∈ V (G) : w is adjacent to v} . A set F of edges
of G is said to cover V (G) if every vertex of G belongs to at least
one edge from F. An independent set of edges (or vertices) in G is
a set of edges (or vertices) of G which are pairwise non-adjacent.

For a positive integer k, a k-matching of G is an independent
set of edges of size k. A perfect matching (or 1-factor) of a graph
G is an independent set of edges in G that will cover all of the
vertices of G. Some obvious conditions on G for a perfect matching
to exist are that |V (G)| must be even and the degree of each vertex
must be at least one. While these conditions are necessary they are
certainly not sufficient. For example, the graph in Figure 1 has no
perfect matchings.

Fig. 1

For the following definitions, G1and G2 are two graphs with
disjoint vertex sets. The Cartesian product G = G1 × G2 has
V (G) = V (G1) × V (G2) , and two vertices (u1, u2) and (v1, v2)
are adjacent if and only if either

u1 = v1 and u2v2 ∈ E (G2) or u2 = v2 and u1v1 ∈ E (G1) .
As in Plummer [2], a graph G of order greater than 2n and hav-

ing a perfect matching is defined to be n-extendable if every inde-
pendent set of edges of size n can be extended to a perfect matching
in G. Let S ⊆ V (G) . By G−S we will mean the graph with vertex
set V (G)−S and edge set {uv : uv ∈ E (G) and u /∈ S and v /∈ S} .

A Method for Enumerating Perfect Matchings

We use a helpful classification method to count the number of
perfect matchings in a graph G. Every vertex v must be covered by
a perfect matching, which means there is exactly one vvi, for some
vi ∈ N (v) , in every perfect matching. We know that the number
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of perfect matchings containing vvi equals the number of perfect
matchings in G − {v, vi} . Therefore, for any v ∈ V (G) , we can
classify the perfect matchings of G by which edge vvi they contain.
Throughout the paper we will let f (G) be the number of perfect
matchings in the graph G. So, for any fixed vertex v of G,

f (G) =
X

w∈N(v)
f (G− {v, w})

v v1

v2

v3

(a) (b)

Fig. 2

For example, consider the graph Q3 (Figure 2a). For any
vw ∈ E (Q3) , the graph Q3 − {v,w} is isomorphic to P3 × K2

(Figure 2b). Using the labeling of Figure 2a we see that f (Q3) =
f (Q3 − {v, v1}) + f (Q3 − {v, v2}) + f (Q3 − {v, v3}) . Thus,

f (Q3) = 3 · f (P3 ×K2) = 9.

Now consider the graph Kn,n, the complete bipartite graph,
where one part has vertex set {v1, v2, . . . , vn} and the other part
has vertex set {w1, w2, . . . , wn} . Consider vertex v1 with N (v1) =
{w1, w2, . . . , wn} . Using our method, it follows that f (Kn,n) =Pn
i=1 f (Kn,n − {v1, wi}) . Realizing that for every vw ∈ E (Kn,n) ,

we have Kn,n − {v, w} ∼= Kn−1,n−1, we can see that f (Kn,n) =
n · f (Kn−1,n−1) . When we expand further we get f (Kn,n) =
n (n− 1) (n− 2) . . . (2) f (K1,1) . The graph K1,1 has one perfect
matching, so

f (Kn,n) = n!.

Similarly, for Kn (n-even), f (Kn) = (n− 1) f (Kn−2) . Ex-
panded, f (Kn) = (n− 1) (n− 3) . . . (3) f (K2) . The graph K2 has
one perfect matching, so

f (Kn) = (n− 1) (n− 3) . . . (3) (1) (n-even).
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We also use this method on several classes of Cartesian product
graphs. One example is the graph P3 × Pn. For this example we
will define Tm as (P3 × Pm+1)−{v} , where v ∈ V (P3 × Pm+1) has
degree two. (See Figure 3a.) Before we calculate f (P3 × Pn) we
will calculate f (Tm) .

(b)(a)
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Fig. 3

With reference to Figure 3, observe that:
f (Tm) = f (Tm − {vm+1, wm+1}) + f (Tm − {vm+1, vm}) , and
f (Tm − {vm+1, wm+1}) = f (P3 × Pm) . (See Figure 3b.) Next ob-
serve that f (Tm − {vm+1, vm}) = f (Tm−2) because, as we see in
Figure 3c, each perfect matching of Tm−{vm+1, vm} must contain
the edges umum−1 and wm+1wm. But, finally, we note that the
graph (Tm − {vm+1, vm}) − {um, um−1, wm+1, wm} is isomorphic
to Tm−2. Therefore,

f (Tm) = f (P3 × Pm) + f (Tm−2) .
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Now we will calculate f (P3 × Pn) . (See Figure 4a.) If P3×Pn
is to have a perfect matching, n must be even. Then f (P3 × Pn) =
f (P3 × Pn − {un, vn})+f (P3 × Pn − {un, un−1}) .We will look at
each of the terms of the sum individually.

First we will consider f (P3 × Pn − {un, vn}) . (See Figure 4b.)
We can see that f (P3 × Pn − {un, vn}) = f (Tn−2) because the
edge wnwn−1 must be a part of any perfect matching and
(P3 × Pn − {un, vn})− {wn, wn−1} is isomorphic to Tn−2.

wnw n

v n
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Fig. 5

Now consider f (P3 × Pn − {un, un−1}) , which must be bro-
ken down further. Let R = (P3 × Pn − {un, un−1}) . (See Fig-
ure 5a.) Then f (R) = f (R− {vn, wn}) + f (R− {vn, vn−1}) .
We see that f (R− {vn, wn}) = f (Tn−2) since R − {vn, wn} and
Tn−2 are isomorphic. Now we note that f (R− {vn, vn−1}) =
f (P3 × Pn−2) , because, as we can see in Figure 5b, any perfect
matching of R − {vn, vn−1} must include the edge wnwn−1 and
(R− {vn, vn−1})− {wn, wn−1} is isomorphic to P3 × Pn−2.

Combining these results we see that

f (P3 × Pn) = f (Tn−2) + f (Tn−2) + f (P3 × Pn−2)

or that

(1) f (P3 × Pn) = 2f (Tn−2) + f (P3 × Pn−2) .
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Recall from our prior work that

(2) f (Tm) = f (P3 × Pm) + f (Tm−2) .
From eq. 2 we can derive that f (Tn−2) = f (P3 × Pn−2)+f (Tn−4) .
Substituting this result into eq. 1 we conclude that

(3)
f (P3 × Pn) = 2 (f (P3 × Pn−2) + f (Tn−4)) + f (P3 × Pn−2)

= 3f (P3 × Pn−2) + 2f (Tn−4) .
From eq. 1 we can derive that 2f (Tn−4) = f (P3 × Pn−2) −

f (P3 × Pn−4) . Making a final substitution of this result into eq. 3
we get our result:

f (P3 × Pn) = 4f (P3 × Pn−2)− f (P3 × Pn−4) .
Using similar strategies we were able to discover recurrence

relations for f (P2 × Pn), f (P2 × Cn) , and f (P4 × Pn) .
The following is a summary of the results using this method of

classification.

n-even n-odd
f (Cn) 2 0
f (Kn) (n− 1) (n− 3) . . . (3) (1) 0
f (Kn,n) n! n!
f (P2×Pn) f (P2×Pn−1)+f (P2×Pn−2) same
f (P3×Pn) 4f (P3×Pn−2)−f (P3×Pn−4) 0
f (P4×Pn) f (P4×Pn−1)+5f (P4×Pn−2)+ same

f (P4×Pn−3)−f (P4×Pn−4)
f (P2×Cn) f (P2×Cn−1)+f (P2×Cn−2) f (P2×Cn−1)+

f (P2×Cn−2)−2

Perfect Matchings in Graphs of the Form G = H ×K2

For graphs of the form G = H ×K2, we use another classifi-
cation method to help in counting the number of perfect match-
ings. In G = H ×K2 there are two copies of the graph H which
we will call Hv and Hw. Let V (Hv) = {v1, v2, . . . , vn} and let
V (Hw) = {w1, w2, . . . , wn} , where vi and wi and are correspond-
ing vertices inH. (i.e. vivj ∈ E (Hv) if and only if wiwj ∈ E (Hw) .)
Also, the edge viwj ∈ E (H ×K2) if and only if i = j. We will call
all edges not completely contained in Hv or Hw crossover edges.
(e.g., v1w1 is a crossover.)

For this type of graph we classify the perfect matchings by the
number of edges used from Hv and Hw. Note that when 0 ≤ k ≤¥
n
2

¦
, and a perfect matching M contains exactly k edges from Hv,
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thenM contains exactly k edges from Hw. So, for 0 ≤ k ≤
¥
n
2

¦
, let

Fk be the set of all perfect matchings of G each of which contains
exactly k edges from Hv. Then we get the following result:

f (G) =

bn2 cX
k=0

|Fk| .

For example, if G = P4 ×K2 (See Figure 6), then

F0 = {{v1w1, v2w2, v3w3, v4w4}} |F0| = 1
F0 = {{v1v2, w1w2, v3w3, v4w4}, {v1w1, v2v3, w2w3, v4w4}, |F1| = 3

{v1w1, v2w2, v3v4, w3w4}}
F2 = {{v1v2, v3v4, w1w2, w3w4}} |F2| = 1

It follows that f (P4 ×K2) = 1 + 3 + 1 = 5

w4w 3w 2w1

v 4v3v 2v 1

Fig. 6

Now consider the general graph Pn × K2, where Pn is the
path v1, v2, v3, . . . , vn. In order to compute f (G) using the above
method, we need to determine the size of Fk for all k, 0 ≤ k ≤

¥
n
2

¦
.

We let hk,n be the number of k-matchings of Pn. Then h1,n = n−1,
the number of edges in Pn.

Note that every k-matching either includes v1v2 or it does not.
The number of k-matchings of Pn that include v1v2 equals the num-
ber of (k − 1)-matchings of Pn−{v1, v2} . That number is hk−1,n−2.
The number of k-matchings of Pn which do not include the edge
v1v2 equals the number of k-matchings of Pn−{v1} . That number
is hk,n−1. Therefore, hk,n = hk−1,n−2+hk,n−1. Using an induction
argument we can show that hk,n =

¡
n−k
k

¢
for 2 ≤ k ≤ ¥n2 ¦ .

In Pn×K2, |Fk| = hk,n since any perfect matching of Pn×K2
which includes exactly k edges from Hv must also include n − 2k
crossover edges. The 2k vertices of hw left uncovered by these
crossover edges can be covered by a k-matching of Hw in exactly
one way, which is to use the edges corresponding to those used in
Hv.

So,

f (Pn ×K2)=
Pbn2 c
k=0 |Fk|=

Pbn2 c
k=0 hk,n (where h0,n= 1, h1,n= n− 1)

=
Pbn2 c

k=0

¡
n−k
k

¢
.
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For G = Cn × K2, let gk,n be the number of k-matchings of
Cn. Again, in this case, we see that |Fk| = gk,n. So f (Cn ×K2) =Pbn2 c
k=0 gk,n where g0,n = 1; g1,n = n; and gk,n = gk,n−1 + gk−1,n−2.

It can also be shown that gk,n = 2hk,n−hk,n−1 = 2
¡
n−k
k

¢−¡n−k−1k

¢
.

Consequently,

f (Cn ×K2) =

bn2 cX
k=0

∙
2

µ
n− k
k

¶
−
µ
n− k − 1

k

¶¸
.

For G = Kn,n × K2, let bk,n be the number of k-matchings
of Kn,n. Clearly b1,n = n2, the number of edges in Kn,n. With a
similar argument to that used for Pn×K2, we can show that for k
such that 2 ≤ k ≤ ¥n2 ¦ ,

bk,n =

³
n!

(n−k)!
´2

k!
.

Now any perfect matching of Kn,n×K2 which includes exactly
k edges from Hv must also include n− 2k crossover edges. When
the vertices of Hw that are covered by these crossover edges are
removed from Hw, the graph that remains is Kk,k. From an earlier
result we know that these 2k vertices can be covered f (Kk,k) = k!
ways. So, |Fk| = bk,n · k!. Combining these results we see that

f (Kn,n ×K2) =

bn2 cX
k=0

³
n!

(n−k)!
´2

k!
· k! =

bn2 cX
k=0

µ
n!

(n− k)!
¶2
.

Extending Perfect Matchings

We will now change our focus from counting perfect matchings
to properties of extendability in certain Cartesian product graphs.
We will make use of the following theorem of Plummer [2].

Theorem 1. If n ≥ 2 and G is n-extendable, then G is also
(n− 1)-extendable.

We begin by characterizing the values of r for which the graph
Kn ×K2 is r-extendable.

Theorem 2. The graph Kn ×K2 is
¥
n
2

¦
-extendable.

Proof. We use the same notation as before, letting G = H ×
K2, where Hv and Hw are copies of Kn. Let M be any set of

¥
n
2

¦
edges in Kn × K2. The graph Kn × K2 is

¥
n
2

¦
-extendable if any

such M extends to a perfect matching.
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Let |M | = x+ y + z, where x is the number of edges from Hv
inM, y is the number of crossover edges inM, and z is the number
of edges from Hw in M.

Case 1 The set M does not contain crossover edges (y = 0) .
Subcase 1 Suppose n is even.

If x (or z)=
¥
n
2

¦
, thenM is a perfect matching ofHv

(orHw). To extend this to a perfect matching ofKn×
K2, add edges that are a perfect matching of Hv (or
Hw). If x 6=

¥
n
2

¦
and z 6= ¥n2 ¦ , then x < ¥n2 ¦ and z <¥

n
2

¦
. Because Kn is clearly

¡¥
n
2

¦− 1¢-extendable, it
follows from Theorem 1 that Kn is x-extendable and
z-extendable. Thus, M can be extended to a perfect
matching of Kn×K2 by extending the set of x edges
in Hv and the set of z edges in Hw.

Subcase 2 Suppose n is odd.
Since 2 · ¥n2 ¦ < n, there exists j, 1 ≤ j ≤ n, such
that neither vj nor wj is incident to any edge in M.
To extend M to a perfect matching of Kn×K2, add
the crossover vjwj and then extend in the graphs
Kn−1 = Hv − {vj} and Kn−1 = Hw − {wj} sepa-
rately.

Case 2 The set M contains at least one crossover edge (y 6= 0) .
Let v1w1, v2w2, . . . , vywy represent the crossover edges
in M. We can extend M to a perfect matching if we
can extend the set of edges from M in the graph Kn ×
K2 − {v1, v2, . . . , vy, w1, w2, . . . , wy} to a perfect match-
ing. Call this set of edges M 0. The remaining graph is
of the form Kn−y × K2. Since there are no crossovers
from the remaining graph in the set M 0 and since we
deleted only crossover edges from our original graph, we
know that M 0 has x + z =

¥
n
2

¦ − y edges. This means
that x ≤ ¥n2 ¦ − y and z ≤ ¥n2 ¦ − y where x is the num-
ber of edges from M in the original Hv = Kn and from
our present Hv∗ = Kn−y, and z is the number of edges
from M in the original Hw = Kn and from our present
Hw∗ = Kn−y.

We showed in Case 1 that for M, an (x+ y + z)-
matching of Kn ×K2 , if y = 0 and x + z =

¥
n
2

¦
, then

M can be extended to a perfect matching of Kn × K2.
Thus for the current graph Kn−y ×K2 and the (x+ z)-
matching M 0, if we can show that x + z ≤ ¥n−y2 ¦

, then
by Theorem 1 and Case 1 we can extend M 0 to a per-
fect matching of Kn−y ×K2, from which it then follows
thatM can be extended to a perfect matching of G when



26 Alabama Journal of Mathematics

y 6= 0. It is easy to show that since x+ z = ¥n2 ¦− y and
y ≥ 1, it must be the case that x+ z ≤ ¥n−y2 ¦

. We have
now shown that Kn ×K2 is

¥
n
2

¦
-extendable.

¤
Theorem 3. If r >

¥
n
2

¦
, then Kn ×K2 is not r-extendable.

Proof. To show that Kn × K2 is not r-extendable for any
r >

¥
n
2

¦
, it follows from Theorem 1 that we need only to show

that Kn ×K2 is not
¡¥
n
2

¦
+ 1
¢
-extendable.

If n is odd let M = {v1v2, v3v4, . . . , vn−2vn−1, w1wn} , and if n
is even letM = {v1v2, v3v4, . . . , vn−3vn−2, vn−1wn−1, wn−2wn} . In
each case M is an

¡¥
n
2

¦
+ 1
¢
-matching of Kn×K2 which covers all

of the neighbors vn of but does not cover vn. Therefore M cannot
be extended to a perfect matching. ¤

An equivalent statement to Theorem 3 is that if Kn × K2 is
r-extendable, then r ≤ ¥n+22 ¦ − 1. For our final result we give a
generalization of this theorem.

Theorem 4. If Kn×Km is r-extendable, then r ≤
¥
n+m
2

¦−1.
Proof. We will show that Kn×Km is not

¥
n+m
2

¦
-extendable.

We will assume that m is even and that m is at least 4. Let
V (Kn) = {v1, v2, . . . , vn} and V (Km) = {w1, w2, . . . , wn} . Then
V (Kn ×Km) = {(vi, wj) : 1 ≤ i ≤ n and 1 ≤ j ≤ m} . To make the
notation easier to handle, we let x = (v1, w1) , ai = (vi, w1) , and
bj = (vi, wj) for 2 ≤ i ≤ n and 2 ≤ j ≤ m.
Case 1 The integer n is even.

Let M be the following set of independent edges:

M = {a2a3, a4a5, . . . , an−2an−1, b2b3, b4b5,

. . . , bm−2bm−1, anz, bmy} ,
where z = (vn, w2) and y = (v2, wm) . Then |M | =

¥
n+m
2

¦
and all of the neighbors of x are covered by M. It is clear
thatM cannot be extended to a perfect matching of Kn×
Km.

Case 2 The integer n is odd.
Here we let M be the set of independent edges given by

M = {a2a3, a4a5, . . . , an−1an, b2b3, b4b5,

. . . , bm−2bm−1, bmy} ,
where y = (v2, wm) . As in the previous case |M | =¥
n+m
2

¦
, and all of the neighbors of x are covered by

M and so M is not contained in any perfect matchings
ofKn ×Km.



Spring/Fall 2005 27

These cases together show that Kn × Km is not
¥
n+m
2

¦
-

extendable and thus is not r-extendable for any r >
¥
n+m
2

¦
. ¤

References
[1] G. Chartrand, L. Lesniak, Graphs and Digraphs, Chapman and
Hall, London, 1996.

[2] Plummer, M.D., “Matching Extension and Connectivity
in Graphs”, Congressus Numerantium, Vol. 63, pp. 147-160, 1988.

[3] Propp, James, “Enumeration of Matchings: Problems and
Progress,” New Perspectives in Algebraic Combinatorics, Berke-
ley, CA, 1996—97), pp. 255—291.

Department of Mathematics & Computer Science
Russell Hall 310
Samford University
800 Lakeshore Dr.
Birmingham, AL 35229
eahynds@samford.edu
(205)726-2034



28 Alabama Journal of Mathematics


