
No Repetitions. I Repeat:
No Repetitions.

By Mike Hudak

Introduction

Whilst a fledgling graduate student oh-so-many years ago, a
conversation with friend and physicist Dr. Philip Honsinger re-
garding the game of chess prompted the following question: does
there exist an infinite sequence of finitely many objects containing
no consecutive repetitions of any finite length?

With only one or even two objects available, the answer is
rather trivially ‘no’ since, for example, the finite sequence 0,1,0 of
the two objects ‘0’ and ‘1’ cannot be extended without either ‘0’
or the block ‘0,1’ consecutively repeating. Clearly sequences like
0,0 and 1,1 already violate the repetition condition and the case
involving the sequence 1,0,1 is similar to the case involving 0,1,0
with the roles of ‘0’ and ‘1’ reversed.

But what if more objects are available? Say, for example, the
ten decimal digits 0 through 9. One might naturally gravitate
towards the irrational numbers, given their common description
of having “non-repeating, non-terminating decimal expansions.”
But, lo and behold, such familiar irrationals as π, e, and roots of
prime numbers have finite consecutive repetitions. π has consecu-
tive 3’s in the twenty-fourth and twenty-fifth decimal positions, e =
2.718281828 . . . , where one can already notice the block ‘1,8,2,8’
consecutively repeating,

√
13 = 3.60555 . . . with ‘5’s’ clearly re-

peating. Evidently, an alternate approach is needed.
Whereas we had ardently hoped that the question was open,

alas, to our chagrin, the question had been answered in the affir-
mative years earlier. Nevertheless, we feel that our solution at the
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time, presented here for the four object case, provides an instruc-
tive example of a non-trivial result established via the application
of elementary techniques only, although the construction is some-
what ingenious. The students just familiarizing themselves with
the rudiments of proof theory and set theory will be exposed to
an infinite union; the notion of ordinals as sets; and definition by
recursion; as well as proofs by induction, by multiple cases, by
contraposition, and by contradiction.

Preliminaries

We adhere to standard set-theoretic notions and notations,
with some minor departures (which we clearly specify) for con-
venience only.

ω is the set of finite ordinals, commonly referred to by students
as the set of whole numbers. Thus, ω = {0, 1, 2, 3, ...} , endowed
with the familiar well-ordering.

Each finite ordinal (whole number) is the set of smaller finite
ordinals. Thus: 0 = {} = ∅, 1 = {0} , 2 = {0, 1} , 3 = {0, 1, 2} ,
4 = {0, 1, 2, 3} , and so on. Note that a whole number expressed
in exponential form is also the set of smaller whole numbers. For
example, 23 = 8 = {0, 1, 2, 3, 4, 5, 6, 7} .

As always, a function is a set of ordered pairs, with no two pairs
having the same first coordinate but (perhaps) different second
coordinates. A sequence is a function with domain ω. A finite
sequence is a function with domain a finite ordinal. Thus, a finite
sequence with domain n is a (finite) sequence of length n. Indexing
begins with 0, not 1, for sequences and finite sequences in this
paper.

For sets A,B, AB = {f : A→ B} . In particular,
84 = {f : 8→ 4} = {f : {0, 1, 2, 3, 4, 5, 6, 7}→ {0, 1, 2, 3}} =
{all finite sequences of length 8 (indexing beginning with 0) of the
objects 0,1,2,3} . Note that the size of the set 84 is the number 48.

We refer to objects in consecutive positions within a (finite)
sequence as a block and, if the block consecutively repeats, the
second occurrence is called the twin block.

The Construction

We define an identification function f : 4→8 4 as follows:

f(0) = h0, 1, 2, 1, 0, 2, 1, 2i = 01210212
f(1) = h0, 1, 2, 3, 0, 2, 1, 3i = 01230213
f(2) = h0, 1, 2, 1, 0, 2, 3, 1i = 01210231
f(3) = h0, 1, 3, 2, 0, 2, 1, 3i = 01320213,
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where the ordering symbols ‘<’ and ‘>’ have been deleted for con-
venience and the commas have been dispensed with as well. No
ambiguity shall arise from this as the only objects in the sequences
we construct are the single digits 0,1,2,3. Note, for example, that
f(0)(0) = 0, f(0)(1) = 1, f(0)(7) = 2, f(1)(5) = 2, etc. We may
employ subscripts for clarity. Thus, f0 (0) = 0, f0 (1) = 1, etc.
(Keep in mind that our indexing begins with 0, hence, f0 (0) = 0
is the 0th term of f (0) , f0 (5) = 2 is the 5th term of f (0) , and
so on.) Clearly, f identifies, or associates, a particular sequence of
length 8 of the objects 0,1,2,3 with each of the ordinals 0,1,2,3.

Next, we use the above function f to recursively define a se-
quence of finite sequences, where, for each n = ω, sn : 8

n → 4.
s0 = h0i = 0, where, again employing an abuse of notation for

convenience, we will drop the ordering symbols, but be aware that
s0 is not the empty set, but rather is a sequence of length 1 with
s0 (0) = 0. Note that 80 = 1 = {0} and 0 ∈ 4 = {0, 1, 2, 3} so s0 is
a function from 80 to 4 as desired.

Given n ∈ ω and sn : 8n → 4, define sn+1 : 8n+1 → 4 as
follows: Fix j ∈ 8n+1 = ©

0, 1, 2, . . . , 8n+1 − 1ª . By the division
algorithm, there exist unique integers, say q and r, with q ∈ 8n =
{0, 1, 2, . . . , 8n − 1} and r ∈ 8 = {0, 1, 2, ..., 7} , such that j = 8q+r.
Define sn+1 (j) = [f [sn (q)]] (r) = fsn(q) (r) .

Note: sn is a finite sequence with domain 8n and codomain 4.
Since q ∈ 8n, sn (q) ∈ 4. So f [sn (q)] is a sequence with domain
8 and codomain 4 (namely, one of the four sequences listed at the
beginning of this section). Since r ∈ 8, [f [sn (q)]] (r) ∈ 4 as desired.

That was the official, technical definition of the sequence
hsn, n ∈ ωi for those readers wishing to construct precise proofs
of subsequent results. For instance, it can be verified by induc-
tion that each sn+1 extends sn as a function and that the pattern
0,1,_,_,0,2,_,_ recurs in blocks of length 8 throughout each sn+1.
We leave the details to the reader.

Although officially defined above, for clarity and ease of com-
munication of general ideas, we content ourselves in this paper
with the following conceptual, intuitive notion of the construction
of hsn, n ∈ ωi . In general, sn+1 is built from sn by successively
inputting the digits of the sequence sn into the identification func-
tion f and concatenating the resulting sequences. For shorthand,
we denote this process as sn+1 = f (sn) , where

s0 = 0 (= h0i , technically) to start with, and
s1 = f (s0) = f (0) = 01210212,
s2 = f (s1) = f (01210212)

= f (0) f (1) f (2) f (1) f (0) f (2) f (1) f (2)
= 01210212, 01230213, 01210231, 01230213, 01210212,

01210231, 01230213, 01210231,
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where the commas were placed after every 8 positions for emphasis
on understanding the construction process. So s2 is a sequence of
length 82 = 64 and s3 = f (s2) is a sequence of length 83, since
each of the 64 digits in s2 is replaced by a sequence of length 8
and then concatenated. It is imperative that the reader understand
this construction algorithm in order to follow the ensuing reasoning
processes.

We now use hsn, n ∈ ωi to construct an infinite sequence,
g : ω → {0, 1, 2, 3} . Whereas an analyst might think to define g as
the limit of the sequence of finite functions under some type of func-
tional convergence, a set theorist uses the union operation instead.
Thus, g = ∪n∈ωsn. Note that each sn is a function with domain n8
and as such, is technically a set of ordered pairs. For instance, s0 =
{(0, 0)} and s1 = {(0, 0) , (1, 1) , (2, 2) , (3, 1) , (4, 0) , (5, 2) , (6, 1) ,
(7, 2)} , whence s0 ∪ s1 = s1. This ensures that g is a relation and
that the domain of g so defined is ω. The fact that each sn+1 ex-
tends sn ensures that g is a function, not merely a relation. Also
note that g extends each sn by virtue of its construction as the
union of the sn’s.

The Main Result

We now focus our attention on the establishment of the follow-
ing theorem:

Theorem 1. For each n ∈ ω, sn contains no consecutive rep-
etition of any finite length.

The proof is by induction with several cases needing to be
considered, and we sketch the reasoning involved, relying heavily
on the heuristic description of the construction of the sequence
hsn, n ∈ ωi rather than the rather cumbersome, but technically
more accurate, official definition.

By inspection, s0 = 0 (again, technically h0i) has no repeti-
tions so the basis step is trivial. The inductive step requires the
verification of the statement: For each n ∈ ω, if sn contains no
consecutive repetition of any finite length, then sn+1 also contains
no consecutive repetition of any finite length.

We choose to instead prove the equivalent contrapositive for-
mulation: For each n ∈ ω, if sn+1 contains a consecutive repetition
of some finite length, then sn also contains a consecutive repetition
of some finite length.

Fix n ∈ ω. Assume that sn+1 contains a consecutive repeti-
tion of some finite length (referred to as a block). We must show
that sn contains a consecutive repetition of some finite length as
well. We focus our attention on the block within sn+1 assumed to
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consecutively repeat. There are multiple cases to consider, namely,
that the repeating block begins with a:

• 0
• Successor to a 0
• Double successor to a 0
• Triple successor to a 0 (i.e., a predecessor to a 0).

Suppose the block begins with 0. As no 0’s consecutively repeat in
any of the f (j)’s, for j ∈ {0, 1, 2, 3} , and as each f (j) begins with
0 but ends in a number other than 0, concatenating the f (j)’s
in the construction of sn+1 from sn cannot induce a consecutive
repetition of the number 0. Thus, the block in sn+1 must be longer
than length 1. As the number 0 only occurs in sn+1 in every fourth
position, and as its twin (i.e., the consecutive repetition of the
block) must also begin with 0 in the case under consideration, we
argue that the block must be at least length 4. However, since 0’s
appear in sn+1 only in the pattern 0,1,_,_,0,2,_,_, and the twin
is an exact duplicate of the block, it is clear that the block must be
at least length 8 and, indeed, be of length a multiple of 8, say 8k,
for somek ∈ ω − {0} , in order for the 0’s and successors to the 0’s
in the block to align with their respective occurrences in the twin.

There are two subcases to consider, namely, the block begins
with:

• 01
• 02.

Assume the block begins with 01. In view of the construction of
sn+1 using f -values of consecutive digits in sn and concatenat-
ing, there must exist a block of digits i0, i1, i2, . . . , ik−1 in sn for
which f (i0) f (i1) f (i2) . . . f (ik−1) constitutes the repeating block
in sn+1. Since f is one to one, the twin in sn+1 must also be formed
as f (i0) f (i1) f (i2) . . . f (ik−1) , in which case the i0, i1, i2, . . . , ik−1
must consecutively repeat in sn, as desired.

Next, assume the repeating block in sn+1 begins with 02. As
the last four positions of each of f (0) , f (1) , f (2) , f (3) , are dis-
tinct patterns of 0,2,_,_, we infer that the first four digits of the
block are in actuality the final four digits of exactly one of f (0) ,
f (1) , f (2) , or f (3) . Thus, we infer the existence of a consecutive
sequence of digits in sn, namely, i0, i1, . . . , ik−1, ik, for which the
block in sn+1 begins with the final four digits of f (i0) , has middle
portion f (i1) f (i2) . . . f (ik−1) , and terminates with the first four
digits of f (ik) . Since the twin begins with the final four digits of
f (ik) , and the twin must begin in an identical manner as the block,
we infer the digit ik is the same digit as i0. Thus the block termi-
nates with the first four digits of f (i0) . Then, essentially shifting
to the left four positions from where the original block begins, we
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assert that f (i0) f (i1) f (i2) . . . f (ik−1) constitutes a new block in
sn+1 beginning with a 01 formation and which also consecutively
repeats. This is the subcase already completed.

Comic Relief

The manner in which the second subcase was han-
dled by appeal to the first subcase reminds us of
the following anecdotal tale.

A physicist and a mathematician were to be
analyzed regarding their respective problem solv-
ing strategies. A series of tests was devised. Ini-
tially, a pail of water was situated on a tabletop.
On the other side of the room was a stove. The
problem was to transfer the pail of water from
the tabletop to the stove. The physicist simply
picked up the pail, awkwardly carried it across the
room, and placed it on the stove. Problem solved.
The mathematician did likewise. Little informa-
tion was gleaned from this.

Next, the pail was placed at the foot of the
table. Again, the objective was to transfer the
pail across the room to the stove. The physicist
bent over, raised the pail, and toted it across the
room to the stove, as before. The pail was then
returned to its original position at the base of the
table. The mathematician, however, when con-
fronted with the same situation, walked to the ta-
ble, raised the pail and placed it on the tabletop
and stopped. After some time, the experimenters,
fearing a lack of communication in the objective,
suggested that the pail now needed to be trans-
ferred from the tabletop to the stove. In response,
the mathematician replied, “Yes, but that problem
has already been solved!”

Case by Case

Continuing onward to the remaining cases, we trust that the
relevance of the above will become apparent. As a reminder, in
all of the following cases, the repeating block must have length a
multiple of 8, say 8k, to ensure that the 0’s align properly in the
adjacent twin.

We note also that some shifting of starting positions of blocks
will take place in the arguments. Consider the example
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_,_, 1,2,3,4,1,2,3,4,_,_ with the block 1234 of length 4 consec-
utively repeating. If the starting position of the old block is shifted
two positions to the left, to verify that the new block, still of length
4, also repeats, it is only necessary to check the alignment of the
two newly acquired positions on the left, all previous alignments
remaining intact. Thus, for the block _,_,1,2 to consecutively re-
peat with 3,4,1,2 in the above example, the initial two blanks must
be filled with 3,4 but the previous alignment of the remaining po-
sitions need not be re-checked.

Consider now the case where the repeating block in sn+1 begins
with a successor to a 0 – i.e., the position directly to the left of the
start of the block is occupied by a 0. Recalling that 0’s only occur
every fourth position, to ensure proper alignment of the twin with
the original block, the twin must also begin with the successor of a
0. Thus a shift of the original block one unit to the left will result
in a new block of the same length (but beginning with 0) that also
consecutively repeats. Thus we are in the case where we have a
repeating block in sn+1 that begins with 0, and as in the anecdote,
that case has already been solved.

Suppose the repeating block instead begins with a double suc-
cessor to a 0 – i.e., the position two places to the left of the start
of the block is occupied by a 0. Again, it is clear that the twin
must also begin with the double successor to a 0.

First note that the two positions following 0,1,_,_ in each of
the four f -sequences are occupied by 21, 23, 21, and 32, respec-
tively, whereas those following the 0,2,_,_ are occupied by 12, 13,
31, and 13, respectively. As these two lists are disjoint, we infer
that the start of the block and the start of its twin must both be
preceded by the same pair, be it 01 or 02. In either instance, shift-
ing the start of the block two units to the left (keeping the same
length) creates a new repeating block with initial 0, and that is a
completed case.

Lastly, suppose the block begins with the triple successor to
a 0. We rely heavily on inspection of the actual four f -sequences
in all future cases and subcases. We analyze three cases, namely,
that the block begins with a 1, a 2, or a 3, respectively. Each case
will be subdivided into two subcases, namely, where the 2nd and
3rd positions of the block are 01 or 02, respectively.

In case 1, subcase 1, we argue that the initial 101 of the block
and its twin must both be preceded by 023, by inspection of the
f -sequences (only f2 ends in 1). Thus a shift to the left 3 units
creates a new repeating block with initial 0, and we have already
solved that case!

In case 1, subcase 2, we argue that the initial 102 of the block
and its twin must both be preceded by 012 (whether from f0 or
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from f2 is immaterial). Again a shift to the left 3 units creates a
new repeating block with initial 0, a solved case.

In case 2, subcase 1, the initial 201 of the block and its twin
must both be preceded by 021 (only f0 ends in 2). Shifting 3 units
to the left again yields a repeating block with initial 0.

In case 2, subcase 2, the initial 202 of the block and its twin
must be from f3 and hence preceded by 013, so shifting left 3 units
yields a new repeating block with initial 0.

In case 3, subcase 1, the initial 301 of the block and its twin
must be preceded by 021 (from f1 or from f3), whence, shifting 3
units left again produces a repeating block with initial 0.

In case 3, subcase 2, the initial 302 of the block and its twin
must be 012 from f1 and once more a shift to the left of 3 units
results in a new repeating block with initial 0.

All cases closed! (Whew!)

The Final Analysis

We have now verified that each of the finite sequences, sn, con-
tains no repeating block of any finite length. However, we promised
an infinite sequence of four objects with no repeating block of any
finite length. We assert that g = ∪n∈ωsn fits the bill. The proof
is by contradiction. For suppose that g has a block of some finite
length with a repeating twin. Since g extends each sn, each sn
has domain 8n, and the limit of the sequence of 8n’s as n→∞ is
∞; there must exist a positive integer, say j, which is sufficiently
large so that the repeating block and its twin in the g sequence is
also contained in the sj sequence. But this contradicts the main
result that none of the sn’s contains a repeating block. Therefore
g can have no consecutively repeating block of any finite length, as
claimed.

In conclusion, we remark that the reader may have noticed that
the situation where only two objects were available to construct the
sequence was quite easily dispensed with in the negative (it was
not possible to construct a sequence with the desired properties)
and the situation with four objects available was answered in the
affirmative (hence also formore than four as well). Clearly, only the
situation with exactly three objects available remains. We invite
readers to investigate for themselves, but we note that the result
is known.
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