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Introduction

The origins of this paper are in a problem often given to stu-
dents: to show that the incircle of a 3 - 4 - 5 triangle has radius
1. In this paper we combine geometry and number theory to find
all the right triangles with integer length sides whose incircle has
a given radius r, where r is an integer. In addition, we count the
number of primitive right triangles having incircle with radius r.

Pythagorean Triples

A Pythagorean triple is a set of three positive integers {a, b, c}
such that a2 + b2 = c2. A Pythagorean triple is called primitive
if, and only if, a, b, and c are pairwise relatively prime. That is,
if none of the pairs {a, b}, {b, c}, or {a, c} share a positive factor
greater than 1.

It is easy to see that if {a, b, c} is a Pythagorean triple, and
if any two of {a, b, c} have a common factor k, then k is a factor
of the third, as well. Thus, in order to show that a Pythagorean
triple {a, b, c} is primitive, it is sufficient to show that a single pair
from {a, b, c} is relatively prime.

Suppose {a, b, c} is a Pythagorean triple. If a and b are both
odd, then a2+b2 is even, but not divisible by 4, and so not a perfect
square (since all perfect squares are either of the form 4n or 4n+1).
Thus, a and b can not both be odd. If both a and b are even, then
c must also be even, and we have the following well-known result:

Proposition 1. If {a, b, c} is a primitive Pythagorean triple,
then one of a and b is even, the other is odd, and c is odd.

[1]
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Throughout, we shall adopt the convention that in a primitive
Pythagorean triple {a, b, c}, a is even, and b is odd.

The following well-known result can be found in most basic
number theory texts.

Theorem 1. Suppose a, b, and c are integers, with a even and
b odd. In order that {a, b, c} be a primitive Pythagorean triple, it
is both necessary and sufficient that there exist positive integers m
and n so that:

(1) m and n are relatively prime,
(2) m ≡Ánmod2
(3) a = 2mn; b = m2 − n2; c = m2 + n2.

If, for example, we select m = 2 and n = 1, we get the familiar
triple {4, 3, 5}; with m = 3 and n = 2, we get {12, 5, 13}. We say
thatm and n generate the triple {a, b, c} and thatm and n generate
the triangle whose sides have lengths a, b, and c. It is clear that
distinct choices of m and n generate distinct triples.

Positive integers m and n that do not satisfy conditions 1 and
2 of the theorem, but do satisfy condition 3, generate a triple that
is not primitive. For example, m = 5 and n = 3 yields {30, 16, 34};
m = 6 and n = 3 yields {36, 27, 45}. It is interesting to note that
not all non-primitive triples can be generated by values of m and
n. For example, there do not exist m and n that generate the triple
{12, 9, 15}. For, if 2mn = 12, then m and n must be either 6 and
1 or 3 and 2. 6 and 1 generate {12, 35, 37}, while 3 and 2 generate
{12, 5, 13}.

Geometry and Triples

The incircle of a right triangle T is the circle inscribed in T.
The center of the incircle of a triangle T is called the incenter of
T, and the radius of the incircle of T is called the inradius of T.

We shall say that a right triangle whose sides form a primitive
Pythagorean triple is a primitive triangle.

In what follows, we are interested only in triangles whose sides
are of integer length.

The following property of the inradius of a triangle is a widely
used exercise.

Proposition 2. Suppose T is a right triangle with sides that
form a Pythagorean triple {a, b, c} (that is, sides of integer length).
The inradius r of T is an integer.
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Proof. Congruent triangles give us that c = a + b − 2r, so
that r = 1

2 (a+ b− c) . If a, b, and c are all even, so that the triple
is not primitive, then a+b−c is even and positive. If a is even and
b is odd, so that c is odd, then a+ b is odd, so that, again, a+ b− c
is even and positive. Thus, r is an integer. ¤

Number Theory Meets Geometry

Direct substitution from the proposition gives us the following.

Lemma 1. Suppose T is a primitive triangle whose sides are
generated by m and n, and suppose T has inradius r. Then r =
n(m− n).

We note that since m ≡Ánmod2, (m − n) is odd. Thus, we
have the following.

Lemma 2. Suppose T is a primitive triangle generated by m
and n, and suppose T has inradius r. Then r is even if, and only
if, n is even.

Suppose r = 2k · q, where q is the product of powers of odd
primes. We know that n has a factor of 2. If n = 2t ·q1, where t < k
and q1 is a factor of q, then m− n = 2k−t · q2, where q1q2 = q and
k − t ≥ 1. However, since m − n must be odd, this is impossible,
and we have shown the following.
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Lemma 3. Suppose r is an even positive integer, and T is a
primitive triangle so that T has inradius r, and T is generated by
m and n. If 2k divides r, then 2k divides n.

Taking r = 2k, we immediately have the following.

Theorem 2. Suppose r = 2k. There is exactly one primitive
triangle T with inradius r, and T is generated by n = 2k and m =
2k + 1.

Proof. Suppose T has inradius r, and T is generated by m
and n. By Lemma 3 we know that 2k divides n. Since n (m− n) = r
with m− n a positive integer, n ≤ r. Thus, n = 2k, and m− n =
1. ¤

For example, consider r = 4. We get that n = 4, and m =
5. These values generate the primitive triple {40, 9, 41}, and the
primitive triangle with sides of length 40, 9, and 41 is the only
primitive triangle with inradius 4.

We now consider the odd prime factors of r.

Lemma 4. Suppose r is a positive integer with prime factor-
ization r = 2k · pq11 · pq22 · . . . · pqtt , and T is a primitive triangle so
that T has inradius r, and T is generated by m and n. Then if pi
divides n, pqii divides n.

Proof. For convenience we write r = 2k · ps1i · ps2i · pj · po,
where s1 + s2 = qi, and s1 ≥ 1. The other odd prime factors of r
are represented as pj · po.

Suppose that n has ps1i as a factor, but has no higher power of
pi as a factor. Since n (m− n) = r, and 2k | n, we must have

n = 2k · ps1i · pj and n (m− n) = ps2i · po
where one of pj and po could equal 1. This gives

m = 2k · ps1i · pj + ps2i · po
so that s2 must equal zero, else m and n have pi as a common
divisor (and the triple is not primitive). Thus, s1 = qi, and p

qi
i

divides n. ¤

We note that it is not necessary for any factor of r = 2k ·
pq11 · pq22 · . . . · pqtt to be a factor of n, except 2k, and we may select
any of the pqii to be factors of n, and we will generate a primitive
triangle whose inradius is r. Furthermore, different selections of pqii
as factors of n yield different values ofm and n, generating different
primitive triangles, each of which has inradius r. Hence, to count
the number of primitive triangles having inradius r, we need only
count the number of ways we can select factors of n. We have the
following.
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Theorem 3. Suppose r is a positive integer with prime fac-
torization r = 2k · pq11 · pq22 · . . . · pqtt . There are exactly 2t primitive
triangles with inradius r.

Proof. Each subset of {1, 2, . . . , t} (of which there are 2t)
defines a unique collection of the pqii , and each of these collections
yields a unique value of n. For each n, we find a unique m, since
n (m− n) = r; each pair m,n generates a unique primitive triple,
giving a primitive triangle with inradius r. Furthermore, we have
seen that for a primitive triangle T to have inradius r, it must be
generated in this fashion. ¤

We quickly have the following corollary.

Corollary 1. If p is an odd prime, there are exactly two
primitive triangles with inradius p.

We shall see that there is a third right triangle with integer-
length sides – though not primitive – with inradius p, and for
values of r that are not odd primes there are other right triangles
with integer-length sides and inradius r, but first we look at an
example.

Example 1. Let us take r = 90 = 2 · 32 · 5. There are two
odd primes in the prime factorization of 90, so we will find 4 = 22

primitive triangles with inradius 90. The generator n must have 2
as a factor, and it can have factors 32, 5, both of these, or neither
of them.

n m− n m a; b; c
2 45 47 188; 2205; 2213
2 · 32 5 23 828; 205; 853
2 · 5 9 19 380; 261; 461
2 · 32 · 5 1 91 16, 380; 181; 16, 381

We have counted exactly how many primitive triangles have
a given inradius r, and we have shown how to find all of these
triangles by selecting values for n using the prime factorization of
r. We shall now investigate non-primitive right triangles and their
inradii. Our goal is to find all the right triangles whose sides are
of integer length and whose inradius is some given integer r.

We know that for a given Pythagorean triple {a, b, c} , the
triangle with sides of length a, b, and c has inradius given by
r = 1

2 (a+ b− c) . We see from this relation that for a positive
integer k, the triangle with sides of length ka, kb, and kc has in-
radius kr. For example, a {4, 3, 5} triangle has inradius 1, so a
{4r, 3r, 5r} triangle has inradius r.

To find all the right triangles with sides of integer length that
have inradius r, we look again to the prime factorization of r and
find all the positive factors of r, including 1. For each factor t of r,
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we find all the primitive triangles with inradius t.We then multiply
the lengths of the sides of these triangles by r

t , and we claim that
this set of triangles is the complete set of triangles whose sides
are of integer length and whose inradius is r. We first see that the
algorithm does give us triangles with inradius r.

Suppose t is a factor of r so that r = k · t, and T is a primitive
triangle with sides of length a, b, and c, such that T has inradius
t. Then the triangle kT with sides of length ka, kb, and kc has
inradius r. Thus, each of the triangles obtained by this method
does, indeed, have the desired inradius r.

On the other hand, if T is a triangle with inradius r, then either
T is primitive, or it is not. If it is primitive, we have found it with
our algorithm, since r is a factor of itself. If T (with sides of length
a, b, and c) is not primitive, the lengths of the sides have a greatest
common divisor, k > 1. The triangle T 0 with sides of length a0 = a

k ,

b0 = b
k , and c

0 = c
k is a primitive triangle with inradius

r
k .We know

that r
k must be an integer, and so a factor of r. Thus, we would

find the triangles T 0 and then T with our algorithm.
Hence, we have found the complete set of triangles whose sides

are of integer length and whose inradius is r. This suggests the
following.

Proposition 3. If r is an odd prime, there are exactly three
right triangles with sides of integer length having inradius r; there
are exactly two right triangles with sides of integer length having
inradius 2.

Proof. There are only two positive factors of r : 1 and r.
There are two primitive triangles with inradius r, and there is one
primitive triangle with inradius 1. ¤

We can generalize this proposition to include powers of primes.

Theorem 4. Suppose p is an odd prime, and k is a positive
integer. There are exactly 2k+1 right triangles with sides of integer
length that have inradius pk; there are exactly k+ 1 right triangles
with sides of integer length that have inradius 2k.

Proof. The factors of pk are l, p, p2, . . . , pk. There is one prim-
itive triangle with inradius 1, and for i ≥ 1, there are two primitive
triangles with inradius pi. The factors of 2k are 1, 2, 22, . . . , 2k. For
each i ≥ 0, there is one primitive triangle with inradius 2i. ¤

We demonstrate the algorithm for finding all the right triangles
with inradius r = 90.
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Example 2. Let r = 90 = 2 · 32 · 5. We know that 2k ·
pq11 · pq22 · . . . · pqtt has (k + 1) · Qt

i=1 (qi + 1) factors, so we ex-
pect (1 + 1) (2 + 1) (1 + 1) = 12 factors. The set of factors of 90
is {1, 2, 3, 5, 6, 9, 10, 15, 18, 30, 45, 90} .

x = factor of 90 factorization of x # primitives with inradius r
1 1 1
2 2 1
3 3 2
5 5 2
6 2 · 3 2
9 32 2
10 2 · 5 2
15 3 · 5 4
18 2 · 32 2
30 2 · 3 · 5 4
45 32 · 5 4
90 2 · 32 · 5 4

Total 30

We have already found the four primitives associated with 90;
the other 26 triangles are non-primitive. For example, for x = 1,
we get {4, 3, 5} , so the associated triangle with inradius 90 has
sides {360, 270, 450} . For x = 2, we find the primitive {12, 5, 13} ;
the associated triangle with inradius 90 has sides {540, 225, 585} .
For x = 3, we find two primitive triples: {8, 15, 17} and {24, 7, 25} .
The associated triangles with inradius 90 have sides {240, 450, 510}
and {720, 210, 750} , respectively. We will not burden the reader
with the other 22 triangles with inradius 90.

Further Considerations

We have described all the right triangles with sides of integer
length whose inradius is a given integer r, and it is reasonable to
investigate triangles whose sides have rational length. However, it
is not a fruitful endeavor. For each positive integer r, there are
infinitely many right triangles with sides of rational length whose
inradius is r.

For let p be a positive integer, and let T be a primitive trian-
gle with sides {a, b, c} and inradius p. The triangle T 0 with sidesn
a
p ,

b
p ,

c
p

o
has inradius 1, so the triangle T 00 with sides

n
ra
p ,

rb
p ,

rc
p

o
has sides of rational length and has inradius r.
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