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The main objective of the current paper is to present a series of
interesting mathematical results which have unusual origins and, in
particular, to consider those results which came out as by-products
from another (sometimes very remote) area of Mathematics. The
nature of this paper is expository. Hence, most proofs are omit-
ted. The motivation for results discussed herein, originates from
observations made in the course of our collective scientific experi-
ence, and from facts from the history of mathematics, not generally
known by mathematicians.

Often a complicated work contains results from another branch
of mathematics. Sometimes these results will have direct proofs
in their own field. Other times no direct proof of this result is
known. We will present examples of both kinds of results. This
phenomenon may have both objective and subjective (psychologi-
cal) explanations. It is not uncommon for a result in one area of
mathematics to include a result from another area of mathematics
that comes as an unexpected corollary. For example, the Fourier
series for sin2 x provides, “at no extra cost,” a proof that

∞X
n=1

1

n2
=

π2

6
.

Sometimes a natural proof of a by-product result can be ob-
tained later using the tools and terminology of the result’s native
field. We will refer to this as the ordinary case. Other times we
have the extraordinary case, when only a proof from another field
is available at the moment. It is known that the famous Desargues
plane theorem [11] can be proven by the stereometric approach,
but a proof by pure geometric planar methods has not yet been
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found. Thus, this result has remained extraordinary for a long
time.

The great Pierre de Fermat wrote the following passage ( see
[18] ) in the margin of a page in his copy of the book Arithmetica
by Diophantos: “To divide a cube into two other cubes, a fourth
power, or, in general, any power whatever into two powers of the
same denomination above the second is impossible, and I surely
have found an admirable proof of this, but the margin is too narrow
to contain it.”

We contemplate the possibility that this famous margin note
may have referred to an extraordinary result from a quite different
consideration. At least this is more palatable than the possibility
that the great mathematician was mistaken.

We will present examples of both ordinary and extraordinary
results. In addition, we will present an extraordinary result that
we hope will have an ordinary future.

At the end of the 1960’s, R. James conjectured that for any nor-
malized basis in a Hilbert space H, the basic harmonic series con-
verges. Recall, a basis in a Banach space X is a sequence {ek}∞k=1
such that each x ∈ X has a unique decomposition x =

P
k αkek.

R. James’s conjecture means that for any normalized basis {ek}∞k=1,
(||ek|| = 1 for all k), the series

∞X
k=1

ek
k

converges. This result is obvious if {ek}∞k=1 is an orthonormal basis.
One simply applies Parseval’s identity. For an arbitrary normalized
basis, this result was much more difficult to prove.

The proof came about, not by directly studying series in Hilbert
spaces, but as a by-product result from trying to generalize Parse-
val’s identity for uniformly convex Banach spaces. A Banach space
X is said to be uniformly convex if there exists a function δ(w) > 0
on (0, 2] such that for any normalized x, y ∈ X with ||x− y|| ≥ w
we have

1− ||x+ y||
2

≥ δ(w).

Examples of uniformly convex Banach spaces are Lp and lp where
1 < p <∞. The following theorem was obtained in [7] and a little
later independently in [12], and allows us to answer R. James’
conjecture quite easily.
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Theorem 1. If X is a uniformly convex Banach space
and {ek}∞k=1 is a normalized basis in X, then there exists
1 < r ≤ s < ∞ and 0 < A,B < ∞ such that if x =

P
k αkek

then

(0.1) B

ÃX
k

|αk|s
! 1

s

≤ ||x|| ≤ A
ÃX

k

|αk|r
! 1

r

A basis {ek}∞k=1 in Hilbert space H is called equivalent to an
orthonormal or Riesz basis if inequality (0.1) holds for r = s = 2.
By the inequality (0.1) one can conclude that the above mentioned
harmonic series in Hilbert space H converges. In addition, we can
see that other series in H such as
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also converge. In each case we do not know an elementary direct
proof and therefore we would say this is still an extraordinary re-
sult. We think that, in explaining this “by-product phenomenon,”
it is essential to consider also a subjective (psychological) reason.
The following humorous anecdote illustrates this.

In 1927, J. Schauder [9] constructed the well known basis in
C[0, 1] of all continuous functions on [0, 1] with the max-norm. Dur-
ing the same period, the following conjecture, known as “Schauder’s
conjecture,” was formulated: For any compact metric space K, the
space C(K) of continuous functions on K with the max-norm has a
basis. In attempting to solve this problem, many important “side”
results were obtained. But in 1952, independently of this problem,
A. Miliutin established (published in 1966) the following important
result:

Theorem 2. (A. Miliutin, [7]) For a compact metric space K
with the cardinality of the continuum, the space C(K) is isomorphic
to C[0, 1]. In other words, there exists an algebraic isomorphism (a
bijection preserving vector operations) T : C(K) onto C[0, 1] such
that ||T || <∞ and ||T−1|| <∞.

Obviously, from this brilliant theorem follows the solution of
Schauder’s conjecture for the case of a compact metric space K
with cardinality of the continuum, but A. Miliutin didn’t know
about that problem as he was only focused on the isomorphism
problems.
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In 1966, Miliutin considered the following “by-product” prob-
lem: For which compact metric space K does C(K) have an inter-
polating basis {ek(t)}∞1 with given sequence of nodes {tk}∞1 ⊂ K
(i.e. in the decomposition of each x(t) ∈ C(K)

x(t) =
∞X
1

αkek

the sum ζ =
Pn
k=1 αkek interpolates x(t) at nodes t1, t2, . . . tn with

n = 1, 2, . . .)? He got the following answer:

Theorem 3. C(K) has an interpolating basis with nodes {tk}∞1
if and only if {tk}∞1 is dense in K.

Of course this theorem completely solves the J. Schauder prob-
lem, but the author overlooked this and was informed about it only
because of a reference on his publication [17] in an article by E.
Michael and A. Pelczynski [16] which appeared at almost the same
time. By the way, in that article [16], they proved the following big
strengthening of the J.Schauder conjecture (also as a side product
of one important geometric discovery):

Theorem 4. C(K) has a monotone basis {ek}∞1 (i.e. for any
sequence of scalars {αk}∞1 ), the sequence

{||
nX
k=1

αkek||}∞n=1

is non-decreasing.

A space C(K) is a particular case of the important concept
of Banach space which is, by definition, a complete normed lin-
ear space. In 1931, Stephen Banach formulated his famous “basis
problem” on the existence of a basis in every separable Banach
space.

For the next 40 years, many efforts were made to solve this
problem using the tools from the geometry of Banach spaces. Us-
ing this natural approach, mathematicians were only successful in
finding a negative solution for the case of the monotone basis prob-
lem [9]. In 1972, a negative solution of the “basis problem” was
suddenly obtained by Per Enflo as a by-product result of his neg-
ative solution of Grothendieck’s famous “boundary approximation
problem” in operator theory. For details we refer readers to the
original work [10]. For his solution of the basis problem, Per En-
flo got a special symbolic award from Polish mathematicians, the
“fried Mazur goose,” which according to tradition, should be eaten
alone or shared with colleagues. Since the goose was large, Per
opted for the latter. Some of his colleagues joked that, for the
Grothendieck problem, Per was eligible for a larger award – such
as fried ostrich (we think that this by-product of the Warsaw Zoo



Spring/Fall 2003 5

was not available). But the following conclusion is not a joke:
sometimes a by-product result has the form of a Corollary of a
more general fact from quite a different area.

Independent of such curious phenomena, the provocative role of
by-product results even from close fields of mathematics sometimes
looks very impressive.

There is an interesting story that illustrates the connection
between different areas of Mathematics as a source of by-product
results. In 1937, Professor Mark Krein taught a special course on
Operator Theory at Odessa State University (Odessa, Ukraine).
At that time, the spectral analysis of self-adjoint operators acting
on Hilbert spaces had just been developed, but nothing was known
about non-self-adjoint operators. Mark Krein told his students that
the person had not yet been born who would say something about
the infinite-dimensional analogy of Jordan theory. He might have
been right in his statement if Moshe Livsic had not been among his
students in this course. In 1946, Livsic defended his dissertation to
get a Doctor of Science Degree in Mathematics, the highest degree
in Mathematics in the former USSR. The defense was in Moscow at
the Steklov Mathematical Institute and his referees were Stephen
Banach, Israel Gelfand and Abraham Plesner. In his dissertation,
M. Livsic made the first fundamental steps in the theory of non-
self-adjoint operators, introducing the major unitary invariant of
a non-self-adjoint operator-characteristic function. Later, in 1954,
he published his classic paper [13] on spectral decomposition of
bounded non-self-adjoint operators which was the starting point
for the infinite-dimensional version of Jordan theory. In this pa-
per, he established an infinite-dimensional analogue of the classical
I. Schur theorem that any matrix is unitary equivalent to a tri-
angular one (matrices A and B are unitary equivalent if there is
a unitary matrix U such that A=U−1BU). As a by-product re-
sult of M. Livsic’s triangular model came his remarkable criterion
for completeness of eigenvectors and associated vectors for a wide
class of bounded, linear operators. Later, a direct proof (without
the triangular model and the characteristic matrix-valued functions
machinery) was obtained by one of his Ph.D. students making this
situation an ordinary one. The triangular model was used to find,
for the first time, conditions under which eigenvectors and asso-
ciated vectors of a bounded linear operator form a Riesz basis.
Later, direct proofs were obtained in a more general setting by
various mathematicians [5], [6], [14], [15].

Another remarkable result that came out of the M. Livsic tri-
angular model approach was his theorem that any completely non-
self-adjoint volterra operator (compact operator with only zero
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points of spectrum) with one dimensional imaginary part is uni-

tary equivalent to the operator of integration (Jf)(x) = i
R l
x
f(t)dt

in L2[0, l]. This operator, as was proven by M. Brodskii [1], is
the infinite-dimensional analogue of the operator with one Jordan
block (all nontrivial invariant subspaces of this operator form a
chain).

Trying to describe all invariant subspaces of the operator J by
the method of characteristic functions, M. Brodskii [2] unexpect-
edly obtained, as a by-product result, the solution of I. Gelfand’s
problem: Find criterion on a given function in L2[0, 1] for which
(Jnf)(x), (n = 0, 1, 2, ...) is dense in L2[0, 1].

This example confirms the conjecture that by-products are one
of the essential factors which make the prognosis of developments
in mathematics somewhat unreliable.

In [20] and [21], the following inequality was established and
came free as a by-product result of the theory of non-self-adjoint
contractive extensions of Hermitian contractions and their charac-
teristic functions that have been applied to the above mentioned
operator of integration J . For any l ∈ (0, π2 ) and f(t) ∈ L2[0, l]

(0.2) cot l
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¯
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0

¯̄̄̄
¯
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x
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¯̄̄̄
¯
2

dx

The inequality (0.2) is sharp, in the sense that the constant,
cot l, cannot be improved for any l ∈ (0, π2 ) and f(t) ∈ L2[0, l].

In addition, although [21] establishes the inequality, it does not
provide necessary and sufficient conditions under which equality
holds. Recently, we found a direct approach, which provides an
elementary proof of (0.2) and shows that equality holds if and only
if y = C cos(t − l), where C is an arbitrary constant. So, we can
consider this as an ordinary result. The following sharp inequality
appeared in [4]. For all f(x), such that f 00(x) ∈ L2[0,∞) and
f(0) = 0,

(0.3) |f 0(0)| ≤ 2− 1
4

µZ ∞
0

|f(x)|2dx+
Z ∞
0

|f 00(x)|2dx
¶ 1

2

This inequality was obtained as a by-product result of the extension
theory of positive symmetric operators acting on a Hilbert space
and spectral analysis of differential operators. No direct proof of
(0.3) is known to date, nor is the function known for which (0.3)
becomes an equation. We hope that a proof is found soon, but so
far this is an extraordinary situation.

We are sure that many mathematicians have some collection of
by-product results and that new information on this matter would
be very interesting and useful to the mathematical community.



Spring/Fall 2003 7

In conclusion, we would like to make the following remarks:

(1) Results as by-products are not a rare phenomenon in
mathematics and we think that almost every mathemati-
cian has in his (her) scientific biography such a situation.

(2) After getting an essential result, the importance and sen-
sibleness of taking a look at possible applications in quite
different areas of mathematics cannot be overestimated.
We should ask ourselves: “Is it possible that I have ran-
domly made a discovery or solved some unsolved problem
in another field?”

(3) It would be useful to create some system of information
about successful by-product results, maybe in the form of
corresponding sections in some mathematical journals.

We would like to thank Chandler Davis for many suggestions,
valuable remarks and support.

Special thanks are to be given to Sergey Belyi and Marianna
Shubov for their editorial help.

We are grateful to the referees for their useful remarks.
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