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Editor’s Note: This paper was inspired by a problem that
appeared in the Spring, 2002 issue of the Alabama Journal of Math-
ematics. The problem poses an original variation on the game of
Nim. It’s statement is as follows:

A simple game begins with 11 stones arranged in
a single pile. Two players take alternating turns.
Each turn consists of selecting any pile that con-
tains at least 3 stones, and then splitting this pile
into two smaller piles. The only restriction is that,
after each turn, all the currently remaining piles
must contain different numbers of stones. The
game ends when one of the players can make no
legal move, and this player is declared to be the
loser. Assuming that both players want to win
the game, what should be the strategy of the first
player on his/her first turn?

Notice that the only restriction mentioned in the game is that
no two piles of the same size may exist at the same time. There are
two scenarios which result in this restriction being violated. They
are shown schematically below.
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Violations of the problem’s restriction

Given every possible sequence of allowable moves, the game
involving eleven pebbles has only two possible outcomes. Either
there are four piles of size 1, 2, 3, 5 (the game ends after Player
1’s second move); or there are three piles of size 1, 4, 6 (the game
ends after Player 2’s first move).

In particular, note that if the game ends with three piles of
size 1, 4, and 6, then Player 1 loses. So, it should be the strategy
of player one to prevent Player 2 from being able to produce three
piles of size 1, 4, and 6 on his turn.

Working backwards, it can be shown that Player 2’s first move
can produce three piles of size 1, 4, and 6 only if Player 1 breaks
the original pile of eleven pebbles into two piles of size 5 and 6; or
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two piles of size 1 and 10; or two piles of size 4 and 7. Thus, as
long as Player 1 does not produce two piles of size 5 and 6; or 1
and 10; or 4 and 7 on his first turn, he/she will always win. Stated
differently, as long as Player 1 chooses to break down the pile of
eleven pebbles into either two piles of size 2 and 9, or two piles of
size 3 and 8, he/she will automatically win.

This variation of the game of Nim merits further investigation.
In particular, what can be said about the game if the original pile
of pebbles is of arbitrary size n?

Before beginning, we formulate the following definitions:

Definition 1. A decomposition of the original pile into smal-
ler piles is called a closed set if no further decomposition is pos-
sible.

Example 1. In the game involving eleven pebbles, the closed
sets were {1, 2, 3, 5} and {1, 4, 6} .

Definition 2. A closed set is called an even closed set if it
contains an even number of piles.

Example 2. In the game involving eleven pebbles, {1, 2, 3, 5}
is an even closed set.

Definition 3. A closed set is called an odd closed set if it
contains an odd number of piles.

Example 3. In the game involving eleven pebbles, {1, 4, 6} is
an odd closed set.

Definition 4. A game beginning with a pile of n pebbles is a
fair game if there exist both an even and an odd closed set, and if
Player 1 cannot automatically win by making a strategic first move.

Definition 5. A game beginning with a pile of n pebbles is a
quasi-fair game if there exists both an even and an odd closed
set, and if Player 1 can automatically win by making a strategic
first move.

Example 4. The game beginning with eleven pebbles, is a
quasi-fair game. As long as Player 1 makes the “right” first move
(decomposing the pile into two piles of size 2 and 9, or two piles of
size 3 and 8), it is impossible for Player 2 to win.

Definition 6. A game beginning with a pile of n pebbles is a
fixed game if there does not exist both an even closed set and an
odd closed set. (i.e. A game is fixed if either Player 1 cannot lose
or Player 1 cannot win.)

Example 5. Simple calculation shows that games beginning
with either 3, 4, or 5 pebbles are fixed in favor of Player 1, while
the game that begins with 6 pebbles is fixed in favor of Player 2.



12 Alabama Journal of Mathematics

The reader will find it quite easy to prove the following state-
ments about closed sets:

(1) Every closed set is accessible. That is, every closed set,
the sum of whose piles equals n, can be obtained by de-
composing a pile of n pebbles according to the rules and
restrictions stated.

(2) Every closed set is either even or odd. In fact, the num-
ber of moves required to obtain a particular closed set
is unique. If a closed set has k piles, then it is accessed
through k − 1 moves.

Having a grasp of the definitions, some less obvious questions
natural arise, namely:

(1) For which values of n is the game:
(a) fair?
(b) quasi-fair?
(c) fixed?

(2) How does the strategy of the players change with n?

To begin our examination of these questions, we consider all
closed sets for games beginning with ten pebbles or less. (The even
closed sets are in bold type.)

Number of Pebbles Closed Sets
3 {1,2}
4 {1,3}
5 {1,4} ; {2,3}
6 {1,2,3}
7 {1,2,4}
8 {1,2,5} ; {1,3,4}
9 {2,3,4} ; {1,3,5} ; {1,2,6}
10 {1,2,3,4}

Note that for games beginning with less than eleven pebbles,
the games are fixed. Games beginning with 3, 4, 5, or 10 pebbles
have no odd closed sets, and games beginning with 6, 7, 8, or 9
pebbles have no even closed sets. As we observed earlier, a game
beginning with 11 pebbles is quasi-fair. Hence, the question as
to which values of n produce a “fair” game now becomes more
significant, for we see that no game played with than eleven pebbles
or less is a fair game.

Now we continue by examining the closed sets for games be-
ginning with more than eleven pebbles:
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Number of Pebbles Closed Sets
12 {1,2,3,6} ; {1,2,4,5}
13 {1,2,3,7} ; {1,2,4,6}
14 {1,2,3,8} ; {1,2,4,7}
15 {1,2,3,4,5}
16 {1,2,3,4,6} ; {1,2,5,8}
17 {1,2,3,4,7} ; {1,2,3,5,6}
18 {1,2,3,4,8} ; {1,2,3,5,7} ; {1,2,4,5,6} ; . . .
19 {1,2,3,4,9} ; {1,2,3,5,8} ; {1,2,3,6,7} ; . . .
20 {1,2,3,4,10}; {1,2,3,5,9}; {1,2,3,6,8}; . . .
21 {1,2,3,4,5,6}
22 {1,2,3,4,5,7} ; {1,2,3,6,10}
23 {1,2,3,4,5,8} ; {1,2,3,4,6,7}

Note that for these numbers, the only games which are not
fixed are those games played with 16 or 22 pebbles. The question
then arises, what significance is attached to the numbers 11, 16,
and 22 which causes them to have both an even and an odd closed
set?

Consider the closed sets for the numbers preceding 11, 16, and
22:

10 {1,2,3,4}
15 {1,2,3,4,5}
21 {1,2,3,4,5,6}
Each of these numbers is a triangular number. Our conjecture

now becomes apparent:
“If n is the successor of a triangular number greater than 6,

then the game played with n pebbles is at least quasi-fair.”
The proof is rather straightforward, and hinges strongly on the

observation that if a pile of size n is decomposed according to the
restrictions stated in the rules, then one of the resulting piles must
be of size less than n

2 . Now for any successor tk +1 of a triangular
number tk, with k ≥ 4, consider the following two decompositions
of the original pile of size tk + 1 :

{1, 2, 3, . . . , k − 1, k + 1} and {1, 2, 3, ..., k − 3, k, 2k − 2} .

The set {1, 2, 3, . . . , k − 1, k + 1} is obviously closed since it con-
tains piles of size 1, 2, 3, . . . , bk+12 c, hence no pile in the set can
be decomposed. For similar reasons, none of the piles of size
1, 2, 3, ..., k − 3, k, from second set {1, 2, 3, ..., k − 3, k, 2k − 2} can
be decomposed. Regarding the decomposition of the remaining
pile of size 2k− 2 into two piles, the smaller of the two piles would
have to be larger than k − 3 and smaller than b2k−22 c = k − 1.
(i.e., the smaller pile must be of size k − 2.) This implies that the
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larger pile must be of size k. But since a pile of size k already ex-
ists in the set, such a decomposition is not possible. Hence, the set
{1, 2, 3, ..., k − 3, k, 2k − 2} is closed.

Finally, since the set {1, 2, 3, . . . , k − 1, k + 1} has k piles and
the set {1, 2, 3, ..., k − 3, k, 2k − 2} has k−1 piles, we are guaranteed
that one of these sets will be even and the other will be odd. Hence,
the game will be “at least” quasi-fair.

Having proved the conjecture, it would seem reasonable to ask
the questions: “Are these the only values of n (n = tk + 1) which
will produce both an even and odd closed set? Are there other
values of n which yield at least a quasi-fair game?”

We answer these questions by means of an algorithmic proof.
The strategy is as follows: Given triangular number tk with k ≥ 14,
produce an even and an odd closed set for every number tk +m,
for 0 ≤ m ≤ k.

Claim 1. Any game played with at least 105 (tk with k = 14)
pebbles is at least quasi-fair.

Proof.
Step 1: For a game beginning with tk +m pebbles (k ≥ 14) ,

produce a closed set of size k. (i.e., a closed set with k piles.)
Given the closed set {1, 2, 3, . . . , k} for tk, our strategy is to

remove k and replace it with k +m, for 0 ≤ m ≤ k. Observe that
since m ≤ k, we have: 1

2 (k +m) ≤ k. Hence, the possible pairs
of numbers into which (k +m) can be decomposed are “centered”
around “medians” that are less than or equal to k, and at least
one member of this pair must be less than k. But every number
less than k is already in the set. Thus, (k +m) cannot be broken
down.

For any other element s in the set, every number less than s
is already in the set, so s cannot be decomposed. Hence, the set is
closed.

(Note that the same process of adding m to a certain element
in the set will work, not only for k, but also for any other element
in the set which is greater than k −m.)

Step 2: For a game beginning with tk + 1 pebbles (k ≥ 14) ,
produce a closed set of size k−1. (i.e., a closed set with k−1 piles.)

Given the closed set {1, 2, 3, . . . , k} for tk, our strategy is to re-
move three elements and replace them with two elements. In order
to create a closed set whose sum is one greater than tk, we remove
elements, x, y, and z, and replace them with the two elements,
x+y+z+1

2 − 1 and x+y+z+1
2 + 1. In order for this to be possible, we

impose two conditions on x, y, and z :
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(1) Both new elements must be greater than k.
⇒ x+y+z+1

2 − 1 ≥ k + 1
⇒ x+y+z+1

2 .
(2) We choose x, y, and z to be consecutive natural numbers

with x being the least even number for which the first
condition holds.

⇒ x+(x+1)+(x+2)+1
2 ≥ k + 2

⇒ x ≥ 2k
3 .

For k = 3m, for some m ∈ N, we choose x = 2k
3 .

For k = 3m+ 1, for some m ∈ N, we choose x = 2(k+2)
3 .

For k = 3m+ 2, for some m ∈ N, we choose x = 2(k+1)
3 .

Having created these new sets of size k−1 (i.e., k−1 piles) we
must show that they are closed. We prove the case for k = 3m+2.
The other two cases are similar.

In accord with our algorithm, we delete the following elements:

x =
2 (k + 1)

3

y =
2 (k + 1)

3
+ 1

z =
2 (k + 1)

2
+ 2

and replace them with the two elements below:

x+ y + z + 1

2
− 1 = k + 2

x+ y + z + 1

2
+ 1 = k + 4.

Our new set looks like this:½
1, 2, 3, . . . ,

2 (k + 1)

3
−2,2 (k + 1)

3
−1,2 (k + 1)

3
+3,

2 (k + 1)

3
+4, . . . , k − 1, k, k + 2, k + 4

¾
.

It remains to show that this set is closed. Let s be an element
of this set. Then the median of a pair of numbers into which s can
be decomposed is no greater than k+4

2 . Since k ≥ 14 by hypothesis,
we have:

4k − 3k ≥ 12 + 6− 4
⇒ 3k + 12 ≤ 4k + 4− 6
⇒ 3 (k + 4) ≤ 4 (k + 1)− 6

⇒ (k + 4)

2
≤ 2 (k + 1)

3
− 1.
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So every number less than k+4
2 is already in the set. Hence, s

cannot be broken down and our set is closed.
We have just established that for a game beginning with tk+1

pebbles (k ≥ 14) , we can create a closed set of size k−1 (i.e., k−1
piles). In order to create a closed set of size k−1 for every number
between tk+1 and tk+1,we algorithmically increment the elements

succeeding 2(k+1)
3 + 2 (the last element that we deleted from the

set). In order to generate closed sets, we find the “capacity” of the
set that we have just produced for tk+1.We begin by successively
incrementing the largest element of our set as shown below:½

1, 2, 3, . . . ,
2 (k + 1)

3
−2,2 (k + 1)

3
−1,2 (k + 1)

3
+3,

2 (k + 1)

3
+4, . . . , k − 1, k, k + 2, k + 4

¾
½
1, 2, 3, . . . ,

2 (k + 1)

3
−2,2 (k + 1)

3
−1,2 (k + 1)

3
+3,

2 (k + 1)

3
+4, . . . , k − 1, k, k + 2, k + 5

¾
½
1, 2, 3, . . . ,

2 (k + 1)

3
−2,2 (k + 1)

3
−1,2 (k + 1)

3
+3,

2 (k + 1)

3
+4, . . . , k − 1, k, k + 2, k + 6

¾
...

Since we proceed by successively incrementing the largest el-
ement, observe that the largest element of the set, obtained in
this way, cannot exceed 2x. Otherwise, the largest element can
be decomposed into piles of size x and y. (i.e., the largest ele-

ment cannot exceed the value of 4(k+1)
3 .) The amount by which

largest element of the set can be incremented in this fashion is:
4(k+1)
3 − (k + 4) = k−8

3 , where
4(k+1)
3 is the maximum value of

the largest element and (k + 4) is the original value of the largest
element.

After the largest element has been incremented to its maximum
possible value, we begin incrementing the second largest element,
as needed. The maximum amount by which this element (with

original value k+2) can be incremented is given by
³
4(k+1)
3 − 1

´
−

(k + 2) = k−5
3 . After the second largest element of the set has been

incremented to its maximum value, it still may be necessary to
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increment other elements of the set. If so, we proceed to increment
the third largest element k of the set to its maximum value, and
then the fourth largest element k − 1, and so on, until we reach
the element whose original value is 2(k+1)3 +3. Each of these can be

incremented by a maximum of k−23 . Starting with the third element
that can be incremented and proceeding to the last element that

can be incremented, we count k−
³
2(k+1)
3 + 2

´
= k−6

3 elements, in

addition to the largest two, that can be incremented.
Thus, the number of pebbles, by which the capacity of the

original set can be increased by incrementing in this fashion, is
given by:

k − 8
3

+
k − 5
3

+

µ
k − 2
3

¶µ
k − 6
3

¶
.

For any value of k ≥ 14, we would like to be able to use the
aforementioned procedure to add as many as k − 1 pebbles to the
closed set for tk + 1. This will be possible, provided that:

k − 8
3

+
k − 5
3

+

µ
k − 2
3

¶µ
k − 6
3

¶
≥ k − 1.

Solving this inequality yields the approximate solutions k <
−1.45 or k > 12.45. Since, by hypothesis, k ≥ 14, this inequality is
true for all valid values of k.

Having used our algorithm to generate a prospective closed set
with n = tk +m pebbles, it remains to show that the set is indeed
closed. Let s be an element of this set. We need only address

the case where k + 4 ≤ s ≤ 4(k+1)
3 . The median of any pair of

numbers into which s can be decomposed is at most 2(k+1)
3 . But

every number less than 2(k+1)
3 is already in the set. Therefore,

the set of tk +m pebbles, formed in this manner, is closed for all
1 ≤ m ≤ k.

Step 1and Step 2 of this algorithm can be used to generate
an even and an odd closed set for every “non-triangular” number
greater than 105. Step 1 of our algorithm established that a game
beginning with tk pebbles has a closed set of size k, for k ≥ 2. It
can easily be shown that, for a game beginning with tk pebbles,
k ≥ 7, the set {1, 2, 3, . . . , k − 3, k + 1, 2k − 4} is a closed set of size
k− 1. (The sum of the piles is tk and if s is any element in the set,
the set contains every element less than b s2c.)

Thus, every game beginning with at least 105 pebbles has both
an even and an odd closed set. ¤

Corollary 1. There are only finitely many fixed games.
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This generalization of our original version of Nim begs further
investigation. Among the questions awaiting exploration are:

(1) What upper and lower bounds can be placed on the size
of a closed set in a game beginning with n pebbles.

(2) Given a natural number m, what is the smallest number
of pebbles with which a game can begin and yield a closed
set having m as its largest element?

(3) Although every game beginning with n ≥ 105 pebbles is
at least quasi-fair, what can be said about the distribution
of even and odd closed sets as n→∞?
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